
UNIVERSITÀ DEGLI STUDI DI MILANO
FACOLTÀ DI SCIENZE E TECNOLOGIE

DIPARTIMENTO DI INFORMATICA
“GIOVANNI DEGLI ANTONI”

CORSO DI DOTTORATO IN INFORMATICA
XXXVI CICLO, INF/01

TESI DI DOTTORATO DI RICERCA

ASSURANCE-AWARE 5G EDGE-CLOUD
ARCHITECTURES FOR

INTENSIVE DATA ANALYTICS

Candidate: Dott. Filippo Berto

Supervisor: Prof. Marco Anisetti
Co-Supervisor: Prof. Claudio Agostino Ardagna
External Supervisor: Dr. Massimo Valla
PhD Prog. Coordinator: Prof. Roberto Sassi

A.A. 2022/2023

ii

Abstract

Modern data-intensive applications are increasingly demanding in terms of
non-functional properties such as performance, latency, security, and privacy.
In order to achieve such non-functional properties, modern applications ben-
efit from being developed as a composition of services and deployed in a
heterogeneous continuum infrastructure that includes Edge and Cloud facili-
ties. In this scenario, the infrastructures used to deploy services play a crucial
role in providing or supporting non-functional properties of the applications.
For instance, low latency can be achieved via deployment of services in the
far edge nodes. Most of the current literature addresses the problem of de-
ployment of single (stateless)services mainly with the aim of ensuring and
verifying requirements in terms of resources and performance. Only few so-
lutions exist to deploy applications made of services workflows, and in most
of the cases they are focused on functional composition. In general, they
fail to address composition deployment preserving advanced non-functional
properties such as security and privacy. This thesis proposes novel assurance
methodology for modern continuum infrastructures, enabling lightweight in-
depth verification and assessment of non-functional properties constituting
the key cornerstone for a fully non-functional-aware deployment of service
based applications. The thesis proposes an advanced continuum infrastruc-
ture, where the 5G MEC is integrated as an Edge node. It also considers a
continuum which is empowered with a big data ecosystem of services, where
data-intensive analytic workflows can be executed to support critical applica-
tions. The assurance methodology defined in the thesis is collaborative and
lightweight, and is based on i) transparent collection of evidence representing
measurements of relevant continuum states (obtained via monitoring or test-
ing of standard infrastructure-level hooks), ii) aggregation of measurements
into metrics and iii) contracts linking metrics to specific non-functional prop-
erties. The assurance methodology decouples infrastructure assurance from
data processing assurance and application-level assurance. It is the first at-

iii

Abstract

tempt to suggest that infrastructure and data processing assurance can ef-
fectively complement application-level assurance with a limited increase in
computational effort while fully applicable in modern continuum infrastruc-
tures.

The contributions of this thesis are manifold: i) a generic assurance method-
ology for modern infrastructures ii) a set of specific verticalization of the
generic assurance for 5G MEC, Big Data pipelines and CDN networks, iii) a
novel notion of continuum empowered by 5G, iv) property aware deployment
solution for the continuum integrating assurance controls, v) a complete re-
alization of a continuum infrastructure with simulated 5G nodes and a real
data-intensive application for robotic agronomy vi) full experimental evalua-
tion of utility usability and performance.

The assurance approaches developed in the thesis have been applied to a
real-world scenario through the construction of a complete 5G-enabled Edge-
Cloud continuum infrastructure. This was achieved by integrating a 5G net-
work simulator, a MEC deployment infrastructure, a Big Data engine, and a
data analysis pipeline platform. This continuum was used to realize a concrete
application in the area of IoT-based automated agronomy. Such application
is capable of handling the collection, ingestion, analysis and visualization
of on-field data. Such complex modern application requires guarantees on
a set of advanced non-functional properties that were verified adopting the
assurance methodology defined in the thesis.

The obtained results demonstrate the utility and usability of the assurance
in the context of modern data-intensive application as well as the limited
impact in terms of performance obtained thanks to the approach based on
infrastructure-level monitoring and lightweight evidence collection.

iv

Acknowledgements

First and foremost, I would like to express my gratitude to my supervisors and
mentors, Prof. Marco Anisetti and Prof. Claudio Ardagna, for their valuable
advice, support, and guidance during my PhD studies. Their experience and
knowledge have inspired me and helped me grow both as a researcher and as
an individual. I also extend my thanks to Dr. Samira Maghool, Prof. Paolo
Ceravolo, Prof. Valerio Bellandi, and Prof. Ernesto Damiani for their support
in my research. I would like to thank Dr. Massimo Valla, Prof. Massimo
Banzi and Christina Fra’ for their supervision and welcoming collaboration
on the more technical aspects of this work. A special thank also goes to
my colleagues and friends in the Sesar Lab, Annalisa Barsotti, Dr. Samira
Maghool, Antongiacomo Polimeno, Dr. Gabriel Marques Tavares, Jonatan
Maggesi, Nicola Bena, Rafael Seidi Oyamada, and Ruslan Bondaruc. Their
support and the many laughs we shared made my study and life in Milan
a wonderful experience. Finally, I would like to thank my family for always
encouraging me to pursue my interests and pushing me to do my best.

This work has been funded by TIM S.p.A., Services Innovation Department,
Innovation Lab Milano.

v

Contents

Abstract iii

Acknowledgements v

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 Contribution . 3
1.2 Organisation . 4

2 Reference architecture 9
2.1 Modern Edge-Cloud Infrastructures 9
2.2 The role of containerization and virtualisation 12
2.3 The importance of Deployment 13
2.4 Gaps and challenges . 15

3 Infrastructure assurance 17
3.1 Our Assurance Approach at a Glance 18
3.2 Infrastructure Modelling . 19

3.2.1 Service Interfaces and Functionalities 20
3.2.2 Components . 21
3.2.3 Configurations, states and endpoints 22

3.3 Assurance Methodology . 23
3.3.1 Metrics . 23
3.3.2 Contracts . 24

3.4 Assurance Process . 25

vii

Contents

4 Telco Edge Networks 29
4.1 Edge Computing . 31
4.2 5G architecture . 31

4.2.1 Mobile Edge in 5G . 34
4.2.2 Security and Privacy in 5G 37
4.2.3 O-RAN Alliance . 38

4.3 5G Network Simulator . 38
4.3.1 Aether . 39
4.3.2 NFV orchestrator and MEC applications 47

4.4 Automation in networks: Intent Based Networking and services 52
4.5 Satellite networks . 56
4.6 IoT networks . 58

5 Assurance of Telco Edge Networks 61
5.1 Research objective . 62
5.2 Motivating Scenario: 5G enabled edge computing 63
5.3 Actors . 64

5.3.1 5G core network services 65
5.4 5G Functionalities . 66
5.5 5G Properties . 70
5.6 Assurance in satellite and IoT networks 74

6 Assurance for CDN networks 77
6.1 Information Centric Networks 78
6.2 NDN-based CDN . 80
6.3 Assurance Methodology and System Model 80

6.3.1 Abstract Certification Model 83
6.3.2 Metrics . 84
6.3.3 Rules . 86
6.3.4 Contract . 87
6.3.5 Certificate . 88
6.3.6 Non-Functional Properties 89

6.4 Certification Services . 89
6.4.1 Measurement Collection Service 90
6.4.2 Contract Verification Service 91

6.5 Centralized Certification Process 92
6.5.1 Network Model . 93
6.5.2 Certification Process 93

6.6 Decentralized Certification Process 95
6.6.1 Network Model . 95

viii

Contents

6.6.2 Certification Process 97
6.7 Discussion . 100

6.7.1 Network Adaptation 100
6.7.2 Secure Service Deployment 101
6.7.3 Attack Detection . 101

7 Assurance in Big Data Analysis Platforms 103
7.1 Assurance Process and Architecture 105

7.1.1 Assurance Process . 106
7.1.2 Assurance Architecture 109

7.2 Modelling Big Data Analytics Pipeline 110
7.2.1 Processing Pipeline . 110
7.2.2 Big Data ecosystem 112
7.2.3 Building a Big Data Analytics Pipeline 113

7.3 Reference Scenario . 113
7.4 Assurance Evaluation Methodology for Big Data Analytics

Pipeline . 116
7.4.1 Template annotation 116
7.4.2 Instance annotation 117
7.4.3 Assurance evaluation 119

7.5 Discussion . 123

8 Assurance Aware Deployment infrastructures 125
8.1 Continuous Non-Functional Property assurance in deployment

infrastructure . 126
8.1.1 Extending deployment infrastructures 127

8.2 Introduction . 127
8.3 Reference Scenario . 129

8.3.1 Requirements . 129
8.4 Building Blocks . 131

8.4.1 Data-intensive Pipeline 131
8.5 Orchestration Builder . 132

8.5.1 QoS on Continuum Edge 135
8.6 Walkthrough Example . 136

8.6.1 5G Orchestration Deployment 138
8.7 Discussion . 140

9 Assurance Aware Deployment in E2C Continuum 141
9.1 Scenario, Requirements and Architecture 143

9.1.1 Edge-continuum deployment Requirements 144

ix

Contents

9.1.2 Deployment Architecture 145
9.1.3 Cloud . 146
9.1.4 Telco-Edge . 147
9.1.5 On-premises . 148

9.2 Methodology . 149
9.2.1 Annotated Service Composition Template 150
9.2.2 Annotated Continuum Facilities Graph 151
9.2.3 Deployment matching 152
9.2.4 Deployment Recipes 155

10 Experimental scenario: MIND Foods HUB 157
10.1 Background and motivation 158
10.2 System service components 160
10.3 System implementation . 162

10.3.1 Data lake services . 163
10.3.2 Sensor platforms . 165
10.3.3 Data flow . 169
10.3.4 Data pipeline . 170

10.4 Discussion . 170

11 Experimental results 171
11.1 5G Simulator setup . 171

11.1.1 5gcnl-oran experiments 172
11.1.2 5gcnl-osm-20 experiments 177

11.2 Assurance in 5G networks . 180
11.2.1 Network connection availability 181
11.2.2 Network latency performance 182
11.2.3 Network management automation 183
11.2.4 Storage confidentiality 184
11.2.5 Experimental evaluation 184

11.3 Assurance and Certification for CDN networks 185
11.3.1 Certification Contracts 185
11.3.2 Contract Verification Process Performance 187
11.3.3 Network Usage . 188

11.4 Assurance in Big Data Analysis Platforms 190
11.4.1 Experimental setup . 190
11.4.2 Assurance Evaluation Walkthrough 191
11.4.3 Performance Evaluation 198

11.5 Assurance Aware Deployment in E2C Continuum 201
11.5.1 Experimental setup . 201

x

Contents

11.5.2 Performance evaluation 202
11.6 MIND foods Hub Big Data Engine 203

11.6.1 Image thumbnail generation 204
11.6.2 Query history of measurements 204
11.6.3 File retrieval . 205
11.6.4 ICON data ingestion 205
11.6.5 Rover data ingestion 205

12 Future work 207

13 Related work 211
13.1 Telco Edge Networks . 211
13.2 Assurance for CDN networks 214
13.3 Assurance in Big Data Analysis Platforms 215
13.4 Assurance Aware Deployment in E2C Continuum 218
13.5 Experimental scenario: MIND Foods HUB 218

14 Conclusions 221

A Publications 225

Acronyms 231

Bibliography 235

xi

List of Figures

Figure 2.1 An overview of the Edge-Cloud Continuum infrastructure 10

Figure 3.1 A model for modern E2C infrastructures 20
Figure 3.2 A schema of our assurance methodology 23
Figure 3.3 A graphical representation of the assurance process . . . 26

Figure 4.1 5G Core System Architecture Network Functions 32
Figure 4.2 The Edge computing concept in 5G 35
Figure 4.3 MEP infrastructure based on the NFV MANO architecture 36
Figure 4.4 Aether architecture . 40
Figure 4.5 ROC architecture . 40
Figure 4.6 SD-Core 4G vs 5G implementation 41
Figure 4.7 SD-Core Block diagram 42
Figure 4.8 SD-RAN components . 43
Figure 4.9 SD-Fabric architecture 44
Figure 4.10 µONOS RIC components 44
Figure 4.11 OSM alignment with ETSI NFV 47
Figure 4.12 IM operation via NBI . 48
Figure 4.13 OSM modules . 51
Figure 4.14 IBN cognitive loop . 55

Figure 5.1 Scheme of the 5G core network architecture 66

Figure 6.1 A layer-based view of our System model 81
Figure 6.2 Certification methodology 82
Figure 6.3 Abstract certification model 84
Figure 6.4 Rules expressed in a BNF notation 86
Figure 6.5 Abstract certification model instantiation 92
Figure 6.6 Centralized certification process: Communication flow . 95

xiii

List of Figures

Figure 6.7 Decentralized certification process: Communication Flow 99

Figure 7.1 Methodological view of our assurance process 107
Figure 7.2 Assurance Architecture 109
Figure 7.3 The Assurance methodology for Big Data Analytics Pipeline119

Figure 8.1 Our methodology applied to a given meta orchestration
deployed on a given 5G-enabled Edge continuum archi-
tecture . 134

Figure 8.2 The wet lab pipeline deployed on our 5G-enabled Edge
continuum architecture 137

Figure 8.3 VNFD file example . 138
Figure 8.4 AppD file example . 139

Figure 9.1 Deployment Architecture for E2C Continuum 146
Figure 9.2 Our Methodology . 149
Figure 9.3 Annotated Deployment Graphs 154
Figure 9.4 Deployment Recipe for facility f3 156

Figure 10.1 Big Data Engine components and interactions 160
Figure 10.2 Robotic platform during a phenotyping mission 162
Figure 10.3 Software components of the data lake 164
Figure 10.4 Robotic platform during a phenotyping mission 166
Figure 10.5 ICON Architecture . 167
Figure 10.6 Architecture with ICON-Lab and ICON-ESE (produc-

tion) instances . 168

Figure 11.1 Number of CPU cores utilized by the 5G Core Network
components . 174

Figure 11.2 Number of CPU cores utilized by the 5G RAN components174
Figure 11.3 Number of CPU cores utilized by the ROC 175
Figure 11.4 Memory allocated by the 5G Core Network components 176
Figure 11.5 Memory allocated by the 5G RAN components 176
Figure 11.6 Memory allocated by the ROC 177
Figure 11.7 Comparison of CPU cores required by OSM with zero and

ten network services deployed 179
Figure 11.8 Distribution of CPU cores consumption values with in-

creasing number of network services instantiated of the
MON module . 179

xiv

List of Figures

Figure 11.9 Distribution of CPU cores consumption values with in-
creasing number of network services instantiated of the
mongodb Pod . 180

Figure 11.10 Comparison of memory allocated by OSM with zero and
ten network services deployed 181

Figure 11.11 Execution time for the 4 contracts varying the number of
verified nodes . 188

Figure 11.12 Number of metrics requests per contract evaluation . . . 189
Figure 11.13 Performance on the walkthrough in different scenarios . 200
Figure 11.14 Execution time with increasing number of services sj in

the workflow and considering 3, 4 and 5 facilities fj . . . 203
Figure 11.15 Performance comparison between common scenarios . . . 204

xv

List of Tables

Table 4.1 Comparison table of network features 30
Table 4.2 Comparison between the different 5G implementations avail-

able in literature . 47

Table 5.1 Core network services and their purposes 65
Table 5.2 5G core network implemented functionalities 66
Table 5.3 5G core network functionalities likely available in the near

future . 69
Table 5.4 5G network properties . 71

Table 7.1 Running example definition: tasks, template Π and instance I115
Table 7.2 Types of assessment probes 121

Table 11.1 Setup of the virtual machines composing the Testbed . . . 171
Table 11.2 List of all the network services deployed on OSM during the

test . 173
Table 11.3 Walkthrough scenario derived from the running example in

Section 7.3 . 192
Table 11.4 Assurance evaluation results for pipeline p̂ and tasks t̂ con-

sidering the requirements R of our walkthrough scenario in
Table 11.3 . 194

Table 11.5 Assurance evaluation results for ecosystem services ŝ P Ŝ
considering the requirements R of our scenario in Table 11.3 195

Table 11.6 Pipeline probe scripts: Pseudocode 196
Table 11.7 Service ecosystem probe scripts: Pseudocode 198

Table 13.1 Related work comparison 217
Table 13.2 Related work comparison 219

xvii

Chapter 1

Introduction

Non-Functional Properties (NFPs), such as performance, security, and pri-
vacy, are becoming more and more important for modern applications, as they
affect the quality and reliability of the services they provide to the users and
customers. However, designing and operating infrastructures that can con-
tinuously meet these requirements is not an easy task, especially when the
deployed applications are composed of multiple services that run on different
platforms and locations, such as edge and cloud facilities. These distributed
environments pose various challenges and opportunities for the assurance of
NFPs, such as scalability, heterogeneity, dynamism, and complexity. Infras-
tructure assurance is the process of providing evidence and guarantees that
the infrastructure can satisfy and maintain the non-functional requirements
of the applications throughout their lifecycle. Infrastructure assurance in-
volves various methods and techniques to assess and improve the NFPs of
the infrastructure, such as monitoring, testing, verification, optimization, and
adaptation.

We concentrated on two key research lines in this dissertation: i) assurance
methodologies for complex distributed infrastructures, including platforms
composed of ecosystems of services or service-based network infrastructures,
and ii) solutions for assurance-aware deployments in distributed settings, such
as edge and cloud facilities.

The primary objective of this research was to develop strategies and method-
ologies for assessing and improving the NFPs of complex distributed infras-

1

Chapter 1 Introduction

tructures, including security, privacy, performance, availability and scalabil-
ity. A particular emphasis was laid on creating a comprehensive assurance
methodology that could be applied to generic service-based infrastructures.
The objective was to use existing evidence and metrics as much as possible
to assess NFPs and to reduce the need for ad hoc probes. The proposed
work significantly advances transparent and verifiable monitoring and verifi-
cation solutions. Infrastructure components share state measurements with
the network whilst assurance agents use an open framework for collabora-
tively verifying NFPs. Our proposed novel assurance framework integrates
static and dynamic analysis techniques to verify the NFPs of service ecosys-
tems and service-based network infrastructures. We applied our framework
in various domains and scenarios, such as content delivery networks, telecom-
munications edge networks, and Big Data platforms.

The second research line aims to develop techniques and methods to deploy
apps in distributed settings ensuring non-functional aspects such as perfor-
mance, security, privacy, and cost. Our analysis focused on exploring the
correlation between the deployed services and the infrastructure beneath.
We created an assurance methodology for deploying edge-cloud, providing
a guarantee to fulfil Service Level Agreements (SLAs) for the services. We
proposed a novel deployment system that employs optimisation strategies to
ascertain the most efficient deployment configuration for an application, tak-
ing into account the application’s non-functional requisites and the attributes
of the available resources. The aim was to continuously oversee and confirm
the deployment facilities throughout the continuum, whilst aligning service
requirements with facility capabilities. Our methodology was tested using a
fully functional 5G simulator, adhering to the most current standards. Multi-
access Edge Computing (MEC) capabilities were integrated into the simula-
tor, which in turn helped enhance the current European Telecommunications
Standards Institute (ETSI) deployment infrastructure, leading to heightened
responsiveness and assurance capabilities.

We experimentally evaluated our solutions for assurance in continuum archi-
tectures and deployment on the project MIND Foods Hub1, where the we
also contributed to the designing, implementation and deployment of a big
data ecosystem. The aim was to gather agronomic data from on-field sen-
sors, ingest it into a continuous analysis cycle, and automatically generate
Machine Learning (ML) models, data visualisations, and real-time updates

1https://www.mindfoodshub.com/

2

https://www.mindfoodshub.com/

1.1 Contribution

for users. This system, developed in cooperation with TIM S.p.A., comprises
a set of applications deployed within the Edge-Cloud (E2C) continuum, with
5G enabled Internet of Things (IoT) devices operating in the field. The ser-
vices were distributed partly through TIM’s 5G edge network and partly in
our on-premise data centre. The project had system significant requirements,
particularly in terms of performance, as the users expect real-time response,
and in security, given that the university and participating businesses have
exclusive ownership of the collected data. Achieving high levels of NFPs was
challenging due to the complex and distributed nature of the system, while
the literature lacked specific assurance methodologies for E2C environments.
The deployment of applications in the E2C continuum required adjustments
to certain components chosen for the big data engine to enable transparent
service monitoring, continuous verification of NFPs, and deployment automa-
tion, for compatibility with the cloud-ready environment of the deployment.
These adjustments also influenced the assurance process, which led to the
development of methodologies for the E2C continuum.

1.1 Contribution

The research contribution of this thesis can be summarised as follows:

• Analysis of E2C continuum infrastructures, focusing on the challenges
and gaps of the current systems, the standards and solutions available
for effective management of complex application deployments. Addi-
tionally, we examined the capabilities regarding continuous assurance
and certification of advanced user-defined SLAs.

• A novel methodology for assurance and certification of infrastructures
with a focus on network, computation, deployment and automation
of the composition of applications in distributed E2C setting. The
methodology has been employed in multiple case studies including telco
edge networks (5G, satellite, and IoT), Content Distribution Networks
(CDNs), deployment systems for E2C continuum, big data analysis
pipelines, and complex application compositions.

• Development of a 5G simulator in a high availability environment using
the latest standards. The simulator has been employed as a testing

3

Chapter 1 Introduction

ground for experimental research on 5G edge and its integration in the
continuum.

• Identification of novel NFPs suitable for 5G networks, the relative
platform-specific metrics for verifying them, and the current missing
functionalities to support their adoption.

• Definition and implementation of a decentralised and collaborative ver-
ification and certification methodology based on Information Centric
Networking (ICN) networks, resulting in efficient distribution of evi-
dence and certificates among peers.

• Design and implementation of a novel NFP-aware big data engine for
E2C continuum and its application in agronomic analysis automation.

• Assurance of big data analytics architecture integrating controls at
pipeline, service ecosystem and infrastructure level.

1.2 Organisation

This thesis is organized as follows:

In Chapter 2, an overview of the current state-of-the-art E2C infrastructures
is presented. These distributed platforms facilitate the delivery of computing
resources and services over both the edge and the cloud. We described the
main elements that make up the E2C continuum, such as edge nodes, cloud
nodes, network links and orchestration systems. We also discussed the tech-
nologies used to implement and manage these elements, such as virtualisation,
containerisation, software-defined networking and intent-based provisioning.
Moreover, we identified some of the challenges and gaps that need to be ad-
dressed to improve the performance, security, privacy, and trustworthiness of
edge-cloud infrastructures. In this chapter we presented a thorough and cur-
rent reference architecture for Edge-Cloud Infrastructures, while also drawing
attention to the research prospects and areas in this domain.

In Chapter 3, we presented our approach to assurance for infrastructures and
platforms. We defined our infrastructure model as a service-based network,

4

1.2 Organisation

where each element is represented by a service that exposes its functionalities,
monitoring endpoints and NFP. We also described the methodology that we
applied to verify the NFP of the infrastructure. We utilised a blend of static
and dynamic analysis methodologies to assess the infrastructure based on
metrics-produced evidence. Furthermore, we demonstrated the continuous
verification process we employed validate the infrastructure throughout its
life cycle.

In Chapter 4, we examined the field of edge computing in telecommunications
networks. We provided a comprehensive overview of the 5G architecture, in-
cluding its essential components and established standards, such as Network
Function (NF), Network Slicing (NS), and service-based architecture. We
then described the implementation of our 5G network simulator built for re-
search purposes. Next, we examined the automation of service deployment
and configuration through intent-based networking, which facilitates the ex-
pression of network objectives and policies at a high level. Finally, we con-
sidered the implementation of these technologies in other specific networks,
including satellite edge and IoT networks.

In Chapter 5, we introduced the research topic of assurance in edge networks,
with a specific focus on 5G edge networks. We provided an analysis of the
primary stakeholders involved in the 5G networks scenario, including network
operators, service providers, regulators, and users, and their respective roles
and interests in assurance. We also outlined the functionalities of 5G net-
works that are relevant to non-functional properties, such as network slicing,
orchestration, and intent-based networking. Finally, we demonstrate how to
extend the methodology presented in chapter 3 to other edge networks.

In Chapter 6, we examined the operation of CDNs in edge networks. We
presented an implementation of a CDN based on ICN. We utilised Named
Data Networking (NDN), a particular execution of ICN, for constructing
and deploying a CDN that can manage diverse content types, and effectively
distribute them to other nodes. We presented a decentralised and collabo-
rative methodology for assurance of NFPs using NDN. We utilised an open
framework that enables CDN nodes to share their state measurement with
the wider network. Furthermore, assurance agents work collaboratively to
objectively verify NFPs.

In Chapter 7, we addressed the issue of reliability and assurance NFPs in
big data analytics pipelines. We explored challenges and opportunities for

5

Chapter 1 Introduction

assurance in these pipelines, including data privacy and security, and code
quality and security. We also presented our approach to continuous assurance
in such a scenario through a template model, a generic representation of a big
data analytics pipeline that captures its structure, functionality, and NFPs.
We used the template model to specify and verify the NFPs of the pipeline,
as well as to monitor and optimize the pipeline performance.

Chapter 8 provides a comprehensive investigation of the latest deployment
infrastructures for the E2C continuum. This paradigm facilitates the smooth
and dynamic provisioning oof applications and services across various layers
of computing resources, ranging from the edge devices to the cloud servers.
Furthermore, we examined analyse the integration of SLAs into these systems,
allowing the specification of the quality and non-functional guarantees that
service providers and consumers agree upon. Follows a detailed assessment of
5G’s MEC, which currently represents the standard solution for application
deployment at the 5G edge, as it provides low-latency, high-bandwidth, and
context-aware services by leveraging the proximity and capabilities of edge
nodes.

In Chapter 9, our methodology for achieving NFP in deploying applications
in distributed multi-cloud environments is outlined, with a specific emphasis
on the E2C continuum. Deploying applications in distributed multi-cloud
environments presents numerous challenges due to environment heterogene-
ity, complexity, uncertainty and dynamism. Therefore, we introduced a new
methodology that uses the concept of deployment matching to select and in-
tegrate the most appropriate deployment alternatives for every application
component based on their NFP prerequisites and the features of the avail-
able resources. We provided an example of a data analysis pipeline and
demonstrate how our solution, which takes into account the system proper-
ties, ensures conformity to user-defined Service Level Objectives (SLOs).

Chapter 10 outlines our practical experimental setting, in which we devel-
oped an edge-deployed big data engine to continuously collect and analyse
data from an automated agronomy robotic platform. The big data engine,
deployed on the edge, utilises the benefits of the E2C framework to deliver
precise and timely insights for the field of agronomy. The IoT platform de-
ployed on the field produces a significant quantity of data from various sensors
and actuators. This data was collected and analysed by the big data engine
deployed on the edge, before being made accessible to network users.

6

1.2 Organisation

In Chapter 11, we presented the experiments and evaluations that validated
our proposed methodology and assess its efficacy and performance in realistic
conditions. Our methodology has been applied across various domains and
scenarios, such as computing infrastructures, 5G edge networks, data analysis
and application deployment compositions. We compared our methodology
with those published in literature, where available, and examined the findings
and their implications in detail.

Chapter 12 presents a list of further gaps and challenges that we identified
during this research, which may be addressed in future work.

In Chapter 13, we conducted a literature review on the topics covered. Our
aim is to provide a critical overview of current research, identify gaps and
challenges in these areas, and contextualise the contribution of this thesis
within the field. We also compared our approach with existing solutions and
methods, and evaluate their advantages and limitations.

In the final chapter of this dissertation, Chapter 14, an impartial assessment
of the results yielded from the experiments and evaluations is presented. The
central contributions and discoveries of the research are summarised, while
taking into account any restrictions and implications to the research method-
ology.

7

Chapter 2

Reference architecture

E2C architectures seek to address the challenges and opportunities presented
by the increasing demand for low-latency, high-bandwidth and context-aware
applications in various domains, such as smart cities, healthcare and Industry
4.0. However, E2C architectures encounter a number of gaps and challenges
that require resolution, including how to guarantee the quality and perfor-
mance of applications and services, how to handle the diversity and complex-
ity of resources and environments, and how to deal with the unpredictability
and dynamism of user and network conditions. This chapter presents a com-
prehensive overview of E2C architectures and their essential components. It
identifies gaps and challenges in existing research and outlines the primary
objectives and contributions of this thesis to address these issues.

2.1 Modern Edge-Cloud Infrastructures

Computing infrastructures are rapidly evolving to meet the growing demand
for scalability, ubiquity and performance, as well as the need for reliable
NFPs. This has led to the development of large-scale data centres and solu-
tions collectively known as the “Cloud”. Cloud providers offer users access to
resources and services hosted in their data centres for a fee. Transferring data
to and from users and data centres has numerous disadvantages, particularly
cost and latency. The progress in network and computing management now

9

Chapter 2 Reference architecture

permits us to allocate some computation in smaller compute centres closer to
the user that operate as intermediary points, hence the emergence of “Edge”
nodes. This solution mitigates these issues at the cost of increased com-
plexity. Data and requests can be preprocessed or resolved directly at the
edge, avoiding the need to connect with the central data centre, improving
the user experience. The increasing popularity of Fog computing, thanks to
improved IoT devices and local networks, means that computation is now
pervasive. Devices that require or provide computation capabilities surround
us, and can communicate with each other, enabling the implementation of
small-scale systems within end-users’ residences. This creates an opportunity
to quickly resolve requests in close proximity to the source. However, this
requires significant management and standardization of each layer and the
abstraction of resources. Figure 2.1 summarises the architecture components
and how the nodes are connected. The available solutions employ competing

Data Centre Data Centre

Edge Centre

People IoT devices

C
lo

ud
C

om
pu

ti
ng

E
dg

e
C

om
pu

ti
ng

Fo
g

C
om

pu
ti

ng

local
network

edge
network

edge
network

public
internet

public
internet

internet
backbone

Figure 2.1: An overview of the E2C Continuum infrastructure.

standards and show considerable heterogeneity, yet generally comprise five
macro components:

Computing The computing part of Cloud platforms entails all the hard-
ware resources, software and interfaces necessary to execute processes. This

10

2.1 Modern Edge-Cloud Infrastructures

includes Central Processor Unit (CPU) cores, memory and dedicated hard-
ware (e.s. GPUs, ASICs, FPGAs, hardware accelerators), but also the li-
braries and interfaces that provide access to these resources and regulate the
applications execution. Cloud platforms provide their users with on-demand
computing resources, ensuring high availability without limits (virtually).
The approach to computing is more and more shifting towards immediate
availability and scalability, with applications based on Function as a Service
(FaaS) and managed containers that are scaled along with the increase and
decrease of user demand.

Network Cloud platforms provide networking capabilities to their users.
The most common service is high-speed connectivity between the allocated
computing resources and the public Internet. Having control over edge-
networks is also becoming more valuable, as Cloud providers can provide their
services in edge nodes with stronger guarantees, such as latency and through-
put, but also security and availability. The more established Cloud solutions
are expanding their offering to include more advanced network solutions, such
as CDNs, 5G mobile networks and satellite networks. We will explore these
topics in detail respectively in Chapter 6 and sections 4.2 and 4.5.

Storage Cloud providers offer for storage are substantially divided in two
types: block storage, where storage space is allocated and served as a disk
device to the computing layer, and the newer object storage, where the data is
modelled to the file level, allowing for transparent replication across multiple
data centres and ease of access through RESTful Application Programming
Interfaces (APIs). Block storage is the de facto standard for Cloud-hosted
Virtual Private Server (VPS) and generally follow a one-to-one relationship
when the host requires write access or one-to-many if only read access is neces-
sary. Contrary, object store services can scatter the data in multiple clustered
hosts, simplifying high availability guarantees and resulting in higher efficient
use of the resources.

Monitoring Monitoring focuses on the collection of evidence on the be-
haviour of the system. In the past, logging was mostly limited to processes
debug messages and ad hoc hardware monitoring (i.e. through Simple Net-
work Management Protocol (SNMP) daemons). With the increase in au-
tomation and request for reliability it has become imperative to have more

11

Chapter 2 Reference architecture

in-depth knowledge about the system in order to identify misbehaviour and
optimization processes. The market is pushing towards transparency of sys-
tems, using common standards of formatting and encoding, and is requesting
more focused tools, supporting logging, span traces and metrics.

Management Automation distinguishes on-premises computing solutions
from Cloud-based ones: providers manage the life-cycle of all data centre
resources and services being provisioned to users in the Cloud. This re-
lieves users of the management burden and creates common business models,
including Infrastructure as a Service (IaaS), Platform as a Service (PaaS),
and at the extreme, FaaS. This implies that the Cloud provider can take
on the responsibilities for computing, networking, storage, and monitoring
solutions. Requests for services and resources, as well as deployments, are
managed through code-based configurations. We will delve further into this
in Section 2.3.

2.2 The role of containerization and
virtualisation

Decoupling of the application being deployed from the target infrastructure
has a number of benefits: i) replicability of the execution environment, ii) iso-
lation from other applications, iii) simplified deployment and its automation,
iv) consistent resources requirements and limits. The two prominent technolo-
gies in this context are Virtual Machines (VMs) and Containers, each with
its own peculiarity. As the industry standardized and integrated these solu-
tions, frameworks for automating build, test and deployment rapidly gained
traction for both these technologies.

Virtualisation A hypervisor provides resources to a guest system through
a standardized abstraction layer, providing both a high level of control over
the system and strong isolation of the running processes from the rest of
the environment. VMs have a complete operating system (kernel, libraries,
applications, …), which introduces some overhead in allocating and accessing
resources. Portability of the VMs is tied to the implementation and support
of standards by the hypervisor: different implementations may have different

12

2.3 The importance of Deployment

levels of support. Applications deployed in VMs generally have middle to
long life-cycle, as the boot and initialization of the system may take several
minutes.

Containerization Containers have their own libraries and applications,
but share the host kernel, so isolation is reduced compared to VM. Security
can still be enforced using namespaces, cgroups and seccomp, minimizing
the permissions of the process and thus the attack surface. Containerization
also has a lower resource overhead, closer to running native processes on the
host system, and generally does not require preallocation. Containers are
more portable than VM, thanks to the strong work of standardization of
their interface and the loose coupling with the underlying operating system.
Portability is reduced if the containerized application relies on features of
the host operating system, such as vendor-specific libraries (e.g. NVIDIA
CUDA1). Containers have a very short initialization time, typically less than
a second, making them suitable for the FaaS use case and rapid scaling.

Security Both virtualisation hypervisors and container engines have ad-
vanced security features to guarantee strong isolation between processes run-
ning on the same system. Nonetheless, there have been examples of attacks
allowing an attacker that has access to a compromised application to gain
control over the host, respectively VM escape [1] and container escape [2].
Moreover, the literature registers several families of attacks against suppos-
edly isolated processes, including but not limited to side-channel attacks [3]
and path prediction attacks [4, 5]. Therefore, we should carefully consider
how possibly insecure or untrusted applications are being executed in shared
hosts.

2.3 The importance of Deployment

Deployment of applications and services in the E2C continuum is especially
challenging due to the several additional domains to be considered: the dis-
tributed nature of the system introduces reliability issues and latency; the
different execution environment increase heterogeneity; the consistency of

1https://developer.nvidia.com/cuda-toolkit

13

https://developer.nvidia.com/cuda-toolkit

Chapter 2 Reference architecture

data and configurations in geographically distant locations. The drive to au-
tomate deployment and infrastructure configuration has given rise to appli-
cation lifecycle management solutions. These take code-based configuration
files as input and manage all aspects of the deployment, such as resource
allocation, network configuration, logging and secrets management facilities,
user and application authentication. The most notable example of these
platforms is Kubernetes2, a highly scalable and extensible container manage-
ment solution commonly used in E2C environments to run highly available
applications. It uses a distributed control plane to monitor and manage the
underlying hardware, and to schedule the deployment of applications and any
additional services they may require. This includes automatic configuration of
networks and network services such as Domain Name System (DNS), Virtual
Private Networks (VPNs) and load balancers. The configurations provided
by the user are stored in a distributed configuration repository, ETCD3, and
act as a target for deployment. The Kubernetes controller acts on the run-
ning systems to achieve the target configuration, e.g. by monitoring process
lifecycle, spawning containers, allocating resources. Complex deployments
are often packaged in charts, deployment templates that offer minimal work-
ing examples and can be customized for the specific use, making sharing of
configurations easier and more replicable.

A more recent trend in this context is intent-based deployment: similar to
configuration-based deployment described above, it uses code to describe how
the system is to be deployed and configured, but in this case the user also
requires guarantees about the feasibility of the deployment and about NFPs
the system. These may include a network latency threshold, bandwidth,
availability or geographical (or network) locality. To achieve this new level
of control, the deployment controller checks the feasibility of the new con-
figuration before applying it. If the new target state is not achievable, it
will initiate a negotiation with the user, lowering the requirements, until a
suitable middle ground is reached, or the user rejects all alternatives.

2https://kubernetes.io
3https://etcd.io

14

https://kubernetes.io
https://etcd.io

2.4 Gaps and challenges

2.4 Gaps and challenges

Currently, the solutions available for the E2C continuum have reached a good
level of maturity, but there are still gaps that must be addressed before mak-
ing these technologies accessible to the wider public.

G1 Non-Functional Property For the last few decades we mostly con-
centrated on performance NFPs such as service latency or network through-
put. This has led us having a huge number of metrics to evaluate the per-
formance quality of our systems and an equally large number of property
definitions. Other NFPs such as security, privacy and locality, are less com-
monly formalized, with ad hoc definitions that are difficult to evaluate and
compare. This is a significant problem when trying to implement a verifica-
tion system, resulting in ambiguous requirements, duplication and undefined
behaviour. Additionally, there is a shortage of a uniform property frame-
work that would enable Certification Authorities (CAs) to specify metrics
and contracts through a standardized interface.

G2 Strong reliance on infrastructure Applications deployed in Cloud or
E2C environments increasingly rely on the infrastructure that provides both
the necessary resources for their operations and the NFPs defined through
SLAs. This simplifies the work of developers, who can think in terms of ab-
stractions of the underlying levels. However, it also introduces coupling and
reliance on the infrastructure implementation, potentially leading to unsatis-
fied properties and vendor lock-in.

G3 Transparent monitoring Components included in a deployment, rang-
ing from the lower levels of the infrastructure up to services, typically provide
some form of monitoring for their status. The three types of monitoring uti-
lized by state-of-the-art solutions are i) logs, straightforward time-tracked
text messages, ii) traces, which are context-aware logs that record the stack
of execution of a specific part of the application, including function argu-
ments, and iii) metrics, time-tracked values that describe particular aspect of
the application. Most applications currently only provide monitoring based
on logs, which significantly hinders our ability to understand their internal
state. Additionally, logs are primarily designed for human-readability rather

15

Chapter 2 Reference architecture

than machine interpretation and lack common encoding standards. However,
there has been a recent push to unify monitoring technologies, particularly for
Cloud-hosted services, enabling informed service management. Nonetheless,
the adoption of de facto industry standard solutions, such as Prometheus and
OpenTelemetry, is still fairly limited.

G4 Multi-layer assurance Assurance techniques in literature typically
concentrate on just one layer of the deployment stack, with some focusing
solely on the service layer, others on the infrastructure layer, and still oth-
ers on the networking layer. This approach relegates other levels to black
boxes, significantly curtailing the information sources employed in property
verification and impairing its effectiveness. This is mainly attributable to the
increasingly large and complex process of verifying and certifying the entire
stack. While some preliminary research on multi-layer assurance is available
in literature, its adoption remains limited.

G5 Deployment automation Automation of deployments is a crucial
factor step in the growth and advancement of E2C solutions. Presently,
numerous systems already offer automation, which can take the form of
configurations-based or intent-based deployment specifications. Kubernetes,
an industry standard mainly supports configurations-based automation. Intent-
based deployment are still in the early stages of development, with some stan-
dardized implementation currently available, such as Open Source MANO
(OSM)4. However, these implementations are not yet widely used and lack a
common standard.

G6 Failure during assurance The assurance process involves multiple
steps that could experience unexpected failures, such as unattainable targets
for metrics calculations and logic errors in contracts that lead to early ter-
mination. Many methodologies for continuous assurance and certification of
systems do not specify or clarify the handling of failures. Additionally, verifi-
cation is often affected by the sense of uncertainty. In case of failure, it may
be unclear which level of the system is causing the malfunction, whether it is
the network, the service, or the communication medium.

4osm.etsi.org

16

osm.etsi.org

Chapter 3

Infrastructure assurance

This chapter details our approach for ensuring the NFPs of the infrastructure
that comprises the E2C continuum. This chapter details our approach for
ensuring the NFPs of the infrastructure that comprises the E2C continuum
and platform supporting computations in the continuum. Our methodology
is based on the continuous verification and validation that the infrastructure
meets the SLAs specified by the service provider and the consumers. The
procedure for assurance of infrastructures includes the following steps:

Infrastructure Modelling A formal and comprehensive model is defined
for the infrastructure, covering its service interfaces, functionalities, compo-
nents, configuration and state, and monitoring endpoints.

Assurance Methodology We propose a methodology for measuring and
evaluating NFPs of the infrastructure, based on evidence collected through
the monitoring endpoints of the services. We utilise contracts to formalise
property verification and test the collected evidence against them.

Assurance Process We detail a systematic and automated approach to
infrastructure assurance, comprising four stages: evaluation mapping, mea-
surements collection, contracts evaluation, and report composition.

17

Chapter 3 Infrastructure assurance

The primary aim of this chapter is to offer a comprehensive overview of our
infrastructure assurance approach, focusing on its significant traits, benefits,
difficulties, and limitations. In addition, we aim to demonstrate, through
the usage of examples and scenarios, how our approach can be practically
adopted.

3.1 Our Assurance Approach at a Glance

Our infrastructure level assurance approach is founded on a model of the
target infrastructure that abstracts implementation details, enabling us to
target different versions of the operating infrastructure. Additionally, we
rely on an assurance methodology that facilitates continuous and consistent
measurement collection from the operating infrastructure to assess its NFPs.
Compared to traditional assurance processes, our process does not require in-
vasive active agents to be deployed in the third-party infrastructures. It is also
capable of addressing the typical NFPs of interest in modern E2C continuum
infrastructures. Specifically, our assurance process is guided by the NFP that
requires verification. We model the NFPs P as families (e.g., confidentiality)
grouping specific types (e.g., confidentiality of the transmission).

In the following, we present the set of relevant property families that we will
consider in this work:

• Access control Only authorized users can access resources, data, and
services, in accordance with administrator-defined policies.

• Automation The degree of automation indicates the percentage of
system processes that do not require human intervention. This encom-
passes activities such as configuring network setups, managing service
deployments, and administering users, among others.

• Availability The system’s availability is defined as its capacity to han-
dle user requests.

• Confidentiality The confidentiality property indicates the protection
of information from disclosure.

18

3.2 Infrastructure Modelling

• Integrity We indicate the integrity of a system as its capability of
retaining consistency of the data and of its internal state.

• Locality We refer to the concept of locality in the context of data,
computation, or message dissemination.

• Performance We define performance characteristics as the system’s
capability to meet users’ demands within a restricted time frame.

• Resilience It refers to a system’s ability to remain partially functional,
even in the event of catastrophic failures.

We note that the NFPs are generic and do not provide guidance regarding
their verification. Our assurance methodology assumes responsibility for this
task.

Example 3.1.1. Let us consider a simplified scenario in which an advanced
5G infrastructure provides on the MEC the ability to store binary data ob-
jects through a RESTful API, while offering token-based access control. This
enables 5G users to efficiently store and retrieve small data pieces, enhancing
their experience with other applications on their device. The storage ser-
vice offers not only storage functionalities but also advanced NFPs, such as
low latency data access. For simplicity, let us define the NFP pdata conf =
Data Confidentiality of a data object as the prevention of unauthorized users
from accessing the stored data.

In the following, we present our infrastructure modelling in Section 3.2 and
assurance methodology in Section 3.3 considering Example 3.1.1 as the sim-
plified target scenario.

3.2 Infrastructure Modelling

Figure 3.1 shows how we model modern assurance in continuum infrastruc-
tures. The purpose of this model is to ensure that the assurance process
remains independent of technical implementation differences at the infras-
tructure level. In this model we consider infrastructure as made of several

19

Chapter 3 Infrastructure assurance

Components

Service Interface

Functionalities

Endpoints

State and
Configuration

implement

implement

composition of

defines

expose
have

Figure 3.1: A model for modern E2C infrastructures.

functionalities grouped to form service interfaces. Here the word Service
follows the more general meaning of meeting a need, rather than the more
typical of network service. Service interfaces, eventually describing a specific
protocol (e.g., O-Radio Access Network (RAN)), are implemented by one or
more components, including hardware devices or software services, that col-
laborate to fulfil the interface requirements. Components are entities that
have an internal dynamic state and a static configuration which defines their
behaviour. State and configuration are exposed by the component to our
assurance process via monitoring endpoints (see Section 3.2.3). We note that
endpoints can be natively present in the components (e.g., access to configu-
ration files) or may need to the implemented by extending them (e.g., latency
probing).

3.2.1 Service Interfaces and Functionalities

A service interface, denoted by s P S, is a collection of functionalities, rep-
resented as f P F, which are composed to satisfy a protocol used to call the
interface s. Each functionality is a minimal executable action and defines
input, output, constraints and data formats. We note that different service
interfaces si may have overlapping functionalities (s1Xs2 ‰ H) or be a subset

20

3.2 Infrastructure Modelling

of another service interface (s1 Ď s2).

Example 3.2.1. Let us consider a service interface sS3 for the object storage
in Example 3.1.1 based on the Simple Storage Service (S3) object storage pro-
tocol1. sS3 defines the service protocol following the S3 specification and iden-
tifies a set of functionalities tfS3GetObject, fS3PutObject, fS3GetBucketPolicy, . . .u.
The protocol establishes how the functionalities can be accessed. For instance
S3, mandates to check the ownership policy applied to the storage location
(bucket) before providing access to its contents. At functional level, con-
straints on arguments and outputs can be specified. For instance, fS3GetBucketPolicy
requires a valid bucket ID as input and returns a configuration entry contain-
ing a list of resources that the user can access and available actions.

3.2.2 Components

A component c P C is a software or hardware item that, alone or collaborating
with other components, implements a service interface. The implementation
relationship I is a mapping from sets of components to sets of service interfaces
as in I℘(C) ÞÑ ℘(S). We say that the set of components c Ď C implements a
certain service s P S if and only if s P I(c), which also means that c implements
all the functionalities in s = tf1, . . . , fnu.

We may have multiple sets of components, possibly disjointed, implementing
the same set of functionalities. In this case c1, c2 Ď C and s P S we have that
s Ď I(c1)X I(c2) and c1 and c2 are said to be interchangeable for s. Similarly,
a certain c P C may implement multiple service interfaces at the same time,
in this case for s1, s2 P S we may have that s1 Y s2 Ď I(c).

Example 3.2.2. Let us consider Example 3.2.1, the service interface sS3
requires combination of the three components sS3 Ď I(tca, cn, csu) as follows.
A server-level component ca implementing the RESTful API for S3 protocol
including every functionality f requested by sS3, network-level component
cn providing network connectivity, and a storage component cs providing
allocable storage space. We note that although components cn and cs do not
directly implement functionalities f in sS3, they are needed to implement the
protocol of service interface sS3.

1https://docs.aws.amazon.com/AmazonS3/latest/API

21

https://docs.aws.amazon.com/AmazonS3/latest/API

Chapter 3 Infrastructure assurance

3.2.3 Configurations, states and endpoints

Each component has an associated configuration and an internal state. The
configuration is static and describes the component’s context and its execu-
tion environment (e.g., bootstrap initialization, environment variables). The
state of a component changes dynamically over time and includes informa-
tion such as variables status and resource usage. Both configurations C and
states S are mappings K ÞÑ V where K is a set of unique keywords and
V Ď (B Y I Y R Y S) is a set of boolean, integer, real or string values. In-
frastructure components normally expose standardized monitoring interfaces
(e.g., Syslog, OpenTelemetry2, Prometheus3) to access internal state and
configurations for audit purposes. In this study, we refer to these monitoring
interfaces as endpoints since they are the primary target of our assurance
process for gathering measurements from the infrastructure.

Example 3.2.3. Let us consider Example 3.2.2 and the server-level com-
ponent ca only. It has a configuration that includes rules on network port
bindings, storage paths and data replication. Such a configuration can be ex-
posed by the application through standard monitoring endpoints or extracted
by ad hoc probes.

The internal state of the server is exposed through a logs and state collector
protocol (e.g., OpenTelemetry or Prometheus), allowing for dynamic mon-
itoring. For instance, let us consider ca, the relative endpoints can expose
the following measures of the components’ behaviour: i) ehealth check(time):
health check to verify the component reachability; ii) eacl(time): the map of
keys that have access to any bucket;. Both endpoints are implemented using
a RESTful API.

Using standard monitoring techniques and a unified framework of endpoint
specifications facilitates towards a more transparent and auditable generation
of E2C solutions. This approach provides a solution to Gap G3 Transparent
monitoring. We note that, in this work we assume that every component
exposes specific endpoints for our assurance process. We also note that, this
work contributed in defining endpoints for standard components that are
nowadays not exposing them (e.g., some 5G core network components).

2https://opentelemetry.io
3https://prometheus.io

22

https://opentelemetry.io
https://prometheus.io

3.3 Assurance Methodology

3.3 Assurance Methodology

Assurance process

ContractsProperties

Components Metrics

State and
Configuration Endpoints

targets references

apply to

verify

based on

have measure query

expose

Figure 3.2: A schema of our assurance methodology.

Figure 3.2 shows our assurance methodology based on the infrastructure mod-
elling in Section 3.2. More specifically our assurance methodology uses the in-
frastructures endpoints as its primary source of measurements. For instance,
an infrastructure component can expose endpoints offering a dynamic mea-
sure of a volume’s available space and a static measure of the space originally
allocated to the volume. Endpoints measurements, are aggregated into met-
rics, that are focused on evaluating a specific behaviour which is suitable for
non-functional property verification (e.g., uptime metric to verify the avail-
ability NFP). Metrics are themselves aggregated into contracts, which refer
directly to a specific NFP and describe how it can be verified in terms of
metric values.

3.3.1 Metrics

A metric is a function m defined by a functionality that aims to measure
its aspects or behaviours on the components that implement it. Metrics
are defined over the states and configurations exposed by the monitoring
endpoints. The evaluation of metrics provides the necessary evidence confirm

23

Chapter 3 Infrastructure assurance

if a particular property holds.

Example 3.3.1. Let us consider the monitoring endpoint eacl from Exam-
ple 3.2.3 and a metric mobj perm(time, object) that measures the access per-
missions of a given object. To define mobj perm, we require data from the eacl
endpoint at instant time. We can then define the target metric as follows.

mobj perm(time, object) = let

bucket = getBucket(object);

acl = eacl(time);

in getPermissions(acl, bucket)

First the metric calculates the name of the bucket that contains object, then
the Access Control List (ACL) is retrieved and finally object’s permissions is
extracted.

3.3.2 Contracts

Contracts are boolean functions that formally describe how to validate prop-
erties of services based on evidence obtained through metric evaluations of the
components monitoring endpoints. Contracts are of the form contract(time, c),
where c Ď C is a set of components that implement a target service inter-
face and time is the instance of evaluation. To ensure consistency, we aim
to have only one contract for each property. In general, we want to define
contracts that are time-dependent, so that their outcome varies depending
on when they are valued. Follows that the time instant in input to the con-
tract influences the metric evaluations that are time-dependent, as shown in
Example 3.3.2.

Example 3.3.2. Let us consider the property of data confidentiality pdata conf
and the metric mobj perm from Example 3.3.1. We define a simple contract
that verifies whether the components c implementing the service sS3 have the
property pdata conf of data confidentiality for the data object object at the
instant time as shown in Equation 3.1.

24

3.4 Assurance Process

pdata conf (time, c, object, expected) = let

allowed = mobj perm(time, c, object);
in allowed ď expected

(3.1)

Notice how the contract definition is parametric, allowing us to check whether
pdata conf is true with different expected arguments. In addition, we do not
set any limit on the metrics’ time of evaluation, allowing us to express even
cases where measurements are predicted in the future.

Contracts address the Gap G1 Non-Functional Property by providing a frame-
work for formal and unambiguous framework for defining properties and veri-
fying their implementation. Moreover, the generality of metrics and contracts
allows to effectively define multi-layer properties, addressing also Gap G4

Multi-layer assurance.

3.4 Assurance Process

An assurance process employs an assurance methodology to furnish its users
with the requisite tools and frameworks to validate properties. The solution
we provide supports continuous and collaborative verification of NFPs of
infrastructure components, extending our previous work [6] and focusing on
the broader target of the continuum infrastructures.

The assurance process, shown in Figure 3.3, implements the methodology
described in Section 3.2 in four steps:

Evaluation mapping the first step involves constructing the dependency
graph of the evaluation. This includes identifying the metrics and contracts
that need evaluation, beginning with the list of targeted properties. To
achieve this, contracts for each target property are located by reversing the
V mapping. Then, any potential duplicate evaluations are eliminated by
enumerating each mentioned metric and its corresponding arguments.

25

Chapter 3 Infrastructure assurance

a) Evaluation Mapping

b) Measurements
collection

c) Contracts evaluation

d) Report
composition

Service
Interface

Contract

Evidence store
query (b.1)

store (b.3)

measure (b.2)

based on

based on

Figure 3.3: A graphical representation of the assurance process. Steps a
through d of the process are repeated cyclically. In this exam-
ple, Component 1 is retro-fitted to the Service Interface using a
probe.

Measurements collection the next step involves collecting measurements
of the metrics listed. The services’ defined interface dictates the means of
collection, such as exposing metrics through a RESTful API or periodically
transmitting health check messages to a queue service channel. Metrics can
be evaluated either on-demand or periodically. On-demand evaluation is more
resource-efficient, but it may introduce latency when calculating the metric
is expensive. Periodic evaluation, on the other hand, can be effective when
retaining the measurement for the entire period does not affect the quality of
the result.

Contracts evaluation the third step performs the actual property ver-
ification by computing the outcome of each contract using the previously
collected measurements and producing a boolean output. The map gener-
ated during the Evaluation mapping step can be utilised to create a priority
queue for efficient contract evaluation.

Report composition finally, the last step compiles the partial results,
which comprise both measurements and contract evaluations. A report is

26

3.4 Assurance Process

generated that includes a description of whether each property has been veri-
fied and the corresponding supporting evidence. This report uses a predeter-
mined machine-readable format for use in other automated processes, such
as certification.

The methodology proposed for the assurance process is based on static evalu-
ation, aiming for independent evaluation steps regardless of the system’s state
during evaluation. This is achieved by operating on measurements collected
and stored in a time-indexed temporary storage instead of using direct mea-
surements. This separation enables time-range based contracts and consistent
replicability in their evaluation.

The measurements collection and contracts evaluation steps are considered
as “impure” in the assurance process due to the potential unforseen behavior
during their execution. Such issues include metric implementation problems,
environment failures, and logical mistakes in contracts. As a consequence,
it is necessary to establish a default course of action for managing failure
scenarios. This protocol may involve reverting to a probabilistic estimate of
outcomes, producing an “undecidable” result, or terminating the evaluation
altogether.

We previously demonstrated that a distributed and collaborative pull-based
implementation of the assurance process is highly effective [6]. This is due to
the ability to cache and reuse previous measurements and evaluations, even
partially, in newer verification evaluations.

Finally, the mapping of multiple contracts to the same property can result
in duplication and inconsistencies. For simplicity, a bijective mapping is
employed in this work. The more general case necessitates the handling of
these edge cases.

27

Chapter 4

Telco Edge Networks

Nowadays, there is a growing trend in the quantity and speed of data, com-
monly utilized by data-intensive Artificial Intelligence (AI)/ML-based ser-
vices, necessitating wider dissemination of more efficient Edge computing
techniques. Furthermore, there is a rise in the usage of critical applications
which involve vast amounts of sensitive data, calling for enhanced security and
privacy safeguards. 5G Edge technology could promote wider Edge comput-
ing adoption, although interoperability hurdles persist. Private edge networks
and computing infrastructures, such as those enabled by 5G and satellite, are
capable of providing the necessary security and privacy assurances for such
applications whilst also delivering high performance and availability. This
enables remote users to access E2C computing solutions, connecting them to
Edge and Cloud data centres.

These networks have few fundamental traits, which are summarized in Ta-
ble 4.1. Optical fibre connections are faster compared to other alternatives
but have limited coverage, especially in rural areas. 5G networks have signif-
icantly higher coverage and maintain a high level of throughput. In contrast,
satellite networks have higher latency and can only achieve lower speeds, how-
ever their widespread coverage enables them to reach users even in remote
areas. The Fibre to the Home (FTTH) Council Europe’s report from April
2023 reveals that 62.2% of the European population and 55.5% of Italians
were covered by FTTH [7]. The April 2023 report from the European 5G
observatory indicates that 81% of the European population and 99.7% of the
Italians have access to 5G coverage [8]. Optical fibre networks have served as

29

Chapter 4 Telco Edge Networks

Table 4.1: Comparison table of network features.

Feature Optical Fibre 5G Satellite
Latency 0.003 ms 1 ms 30 ms (LEO) to

600 ms (GEO)
Throughput 100 Gb/s 20 Gb/s 0.5 Gb/s
Availability Limited

coverage,
especially in
rural and remote
areas

High coverage.
Limited coverage
in rural and
remote areas or
indoors spaces.

Global high
coverage

Reliability Stable
performance

Affected by radio
interferences,
trade-off
between
reliability and
speed

Affected by radio
interferences,
generally high
reliability

Automation Reliable network
configuration
automation
techniques

Reliable network
configuration
automation
techniques.
Early
automation
techniques for
computation

Reliable network
configuration
automation
techniques.
Early
automation
techniques for
computation

a primary medium for the Internet backbone for decades and as the principal
connection type between data centres. Contrary, 5G and satellite networks
have only recently emerged as viable solutions for edge computing, placing
them at a disadvantage in the realm of automated computation deployment.
Nevertheless, their solutions are rapidly maturing.

30

4.1 Edge Computing

4.1 Edge Computing

Nowadays many distributed applications, including many IoT, FaaS and PaaS
frameworks, mostly reside in the central Cloud to ease the integration with
existing service platforms. Edge computing brings new opportunities allow-
ing proximity computing and better match with the need for distribution, but
also new challenges such as integration/orchestrations with services in Cloud
or in other Edge nodes. Edge computing enables new generation applications
to work close to the user allowing i) low-latency access to user plane traf-
fic, ii) context-aware adaptation of application behaviour depending on the
user environment. Edge also provides a positive side effect on reducing the
traffic to the remote server (e.g., in the Cloud) avoiding congestion in scenar-
ios where a centralized entity is involved and therefore potentially improving
the performance. This aspect is very relevant for data-intensive applications,
where the network can be easily saturated due to the intense data exchange.
Advanced Edge computing solutions also allow deploying services in specific
geographical areas in order, for instance, to provide resilience in case of emer-
gency on the centralized nodes or differentiate services based on the location
context.

4.2 5G architecture

The 5G architecture deeply relies on network virtualisation to create flexi-
ble and on-demand instances of functional networking entities. To facilitate
the deployment over a virtual infrastructure, it replaces the point-to-point
interfaces used in 3G and 4G with producer/consumer-based communication
among 5G core network functions. Thanks to this architecture, 5G allows to
scale up and down and with tight control of all network resources, for instance
through virtual network slices designed specifically on service requirements
and dynamically deployed on need.

In the following, we describe the core network components of the 5G archi-
tecture (see Figure 4.1) as defined in [9].

31

Chapter 4 Telco Edge Networks

NEF NRF PCF UDM

AUSF NSSF AMF SMF

Other AFs

MEP

UE R(AN) UPF LADN

MEP

MEP

Figure 4.1: 5G Core System Architecture Network Functions.

Network Function (NF) The core network of the 5G system is composed
of NFs that interact with each other exposing services to the network itself
and interfacing with the outside. These services are generally deployed in a
container-based Cloud-native solution like Kubernetes, which provides addi-
tional features like automatic replication, auto-healing and monitoring.

Authentication Server Function (AUSF) Authentication Server Func-
tion (AUSF) is the network function that implements the Extensible Authen-
tication Protocol (EAP) authentication server used for secure operations in
combination with the Access and mobility Management Function (AMF). It
also stores the keys used by the AMF providing security and integrity fea-
tures.

Network Slice Selection Function (NSSF) In 5G all traffic is relegated
to a set of slices depending on its intrinsic characteristics, i.e. massive IoT
slices with a large number of connections but low bandwidth, mission-critical
slices with very low latency and increased reliability, to name but a few.
Network Slice Selection Function (NSSF) manages the network slicing. It
ensures that the resources required for each slice are available, to match the
defined SLAs to best suit the demand of the target application. The NSSF
selects the network slice to serve to each connected User Equipment (UE),
selects the most appropriate Network Slice Selection Assistance Information
(NSSAI) for each device, mapping it to its virtualised network interface, and

32

4.2 5G architecture

identifies the appropriate AMF set based on the UE subscription information
and location of the device.

Network Repository Function (NRF) Network Repository Function
(NRF) provides service discovery functionalities in the core network for the
Service Communication Proxy (SCP) and other NFs responding to discovery
requests and notifying any update in the available services. It also stores
information about the health of the registered services and the available or
mapped network slices.

Application Function (AF) An Application Function (AF) is an appli-
cation that has access to the services of the core network. These are services
that are deployed in the same container solution and that provide the func-
tionality to the network (i.e., voice or Rich Communication Services (RCS)
chats). AFs can access the Network Exposure Function (NEF), interact with
the Policy Control Function (PCF)’s policy service and the network traffic.
Depending on the trust the provider has in the function, the AF may access
the network traffic directly or through the NEF.

Access and mobility Management Function (AMF) AMF is the NF
that manages the interaction of the UEs on a hardware level. It handles
signalling, security control, handovers, idle mode UE reachability, to name
but a few. It also supports network slicing, being queried by the NSSF for
availability and capabilities. AMF can represent a bottleneck of the mobility
network control plane handling the UE requests. The VM hosting AMF
should be dimensioned in order to avoid performance degradation and should
be handled with elasticity [10].

Unified Data Management (UDM) The Unified Data Management
(UDM) manages all the data regarding users and shared state between NFs. It
is responsible for authentication key generation, identification, access autho-
rization, exposing subscription data to other NFs, session continuity, subscrip-
tion and Short Message Service (SMS) management, to name but a few.

33

Chapter 4 Telco Edge Networks

Unified Data Repository (UDR) The Unified Data Repository (UDR)
handles the storage and retrieval of data on behalf of UDM and PCF. It
is responsible for the integrity and availability of such data throughout the
network.

Session Management Function (SMF) The Session Management Func-
tion (SMF) is the NF that is in charge of the users’ sessions. It collaborates
with the AMF to handle signalling with the UE, allocating Internet Proto-
col (IP) addresses and selecting the most appropriate User Plane Function
(UPF). The SMF is the core network component that collects and enforces
policies provided by the PCF, tracks usage and Quality of Service (QoS) of
the network and manages its configurations.

Policy Control Function (PCF) PCF is the function dedicated to the
management and enforcement of security policies on the network. It provides
a unified network policy framework that arranges the network behaviour and
the management of the policy rules that are enforced on the network by
the Control Plane (CP) functions. It also reads the information linked to
the user subscription from the UDR in order to formulate relevant policy
decisions and send the policies to the SMF (e.g., management of traffic and
other User Plane (UP) functions).

User Plane Function (UPF) UPF is the data plane function that han-
dles the user’s network traffic. It receives signals for the SMF for allocating
IP addresses and prefixes. It routes and forwards the packets, both within
the 5G Virtualised Network (VN) group or to the external networks (i.e., the
Internet). It enforces the policies provided by the PCF, QoS levels and traffic
speed limits. It reports traffic usage and provides common network function-
alities (e.g., Address Resolution Protocol (ARP), packed duplication).

4.2.1 Mobile Edge in 5G

In the typical mobile network scenario, the Data Network (DN) where the
application resides is located very far from the device requesting the access.
This leads to issues in guaranteeing a specific QoS and limited use-cases.

34

4.2 5G architecture

User Equipment (UE) Mobile Access (gNB)

5G Core Network Transit Network Data Network (DN)

Local Area Data
Network (LADN)

Short Distance Long Distance

Figure 4.2: The Edge computing concept in 5G.

In the traditional network, this was solved via edge computing and using a
more flexible deployment approach for the application allowing complete or
partial deployment on the edge node. In 5G this notion of edge computation
is supported by the notion of Local Area Data Network (LADN) connected
to the 5G code network implementing the concept of MEC (see Figure 4.2).
According to ETSI, MEC is a service environment at the edge of a mobile
network within the RAN and in close proximity to the mobile subscribers [11]
and is defined in [12]. The 5G core network can intelligently be aware of the
presence of the application in the telco edge thanks to the 5G UPF routing
the request to the edge application. To do this, UPF communicates with AF
and AF provides back feedback on where to steer the packets. The MEC
deployment manages the local area data network and communicates with
the PCF to request traffic routing by identifying user traffic to be routed.
PCF transforms the request into a policy affecting the user Protocol Data
Unit (PDU) session and provides the routing rules to the SMF. The SMF
identified the UPF present in the PDU of the user. UPF will then be able to
route the user data to the relevant local area data network.

Figure 4.3 shows a more abstract view of the MEC application interaction
with the rest of the mobile network via what is called Mobile Edge Platform
(MEP) having an interface for MEC applications to expose and consume MEC
services (Mp1), and another to interact with the mobile network (Mp2). In
the 5G architecture, the MEP is integrated as a 5G AF [13]. A MEC appli-
cation can register to expose a service (e.g., streaming processing) to other
MEC applications using the MEP interface. The life-cycle of the MEC appli-
cation is handled by Mobile Edge Application Orchestrator (MEAO) acting as
an interface between MEC and Operational Support System (OSS)/Business
Support System (BSS). The MEAO relies on Network Function Virtualisation
(NFV) for handling MEP and MEC so that instantiation and management of

35

Chapter 4 Telco Edge Networks

relative resources follow the NFV interfaces. The MEP and MEC applications
are described using a Virtualised Network Function Descriptor (VNFD) and
Application Descriptors (AppDs), having the scope to provide the necessary
information for the Virtualised Network Function Orchestrator (VNFO) and
Virtualisation Infrastructure Manager (VIM) to deploy instances of virtual
applications (in Clouds or at the edge).

Slicing and Edge NS is the 5G technique to share common physical in-
frastructure across multiple users providing virtual networks tailored to the
service/application needs. Slicing and Edge in 5G share the same objective
to support low latency for time-critical services (URLLC services). Ksentini
et al., [14] envisioned two deployments approach for MEP: i) MEP in multi-
tenancy where MEP is already deployed by the network operator as an AF
for all slices or ii) in slice deployment, where MEP is deployed along with
MEC application. In the case of MEP in slice, MEC can provide services
only to other MEC in the same slice. In the multi-tenant MEP case, the
new MEC service should be advertised both to MEAO and Communication
Service Management Function (CSMF), which needs to include it in their
available function catalogues. In slice MEP provides better isolation but it is
more costly since it requires one MEP per slice.

NFVI

OSS/BSS

Mm2

Mobile Edge
Platform Manager
NFV (MEMP-V)

Data Plane

MEC
App

Mp1

MEC
App

MEC
App

Mp2Nf-Vn

Mobile Edge
Platform
(VNF)

Mm5

Virtualization
Infrastructure

Mm3

Mobile Edge
Application

Orchestrator

Nf-Vi Virtualization Infrastructure
Manager

Or-ViOr-Vnfm

NFVO

Mv2

Mv3

VNFM
(ME app LCM)Ve-Vnfm-em

VNFM
(MEP LCM)

Mp3
Other MEP

Vi-Vnfm

Figure 4.3: MEP infrastructure based on the NFV MANagement and Orches-
tration (MANO) architecture.

36

4.2 5G architecture

4.2.2 Security and Privacy in 5G

5G security is addressed, in general, by defining and applying security policies
across the entire network using the Network Function PCF (5G System by
3GPP standards - working group SA3). Many international standardization
bodies are contributing to the 5G security including International Telecom-
munication Union (ITU), ETSI, Internet Engineering Task Force (IETF),
Next Generation Mobile Networks (NGMN), 5G Infrastructure Public Pri-
vate Partnership (5G-PPP), National Institute of Standards and Technology
(NIST), GSM Association (GSMA), and some of them focused on specific use
case verticals such as mission-critical systems. In addition to standardization
bodies, academic research projects such as the 5G-ENSURE (part of the 5G-
PPP) contributed to the 5G security architecture, providing a set of security
design principles and a set of security functions and mechanisms to implement
security controls necessary to achieve the desired security objectives. The 5G
System (5GS) architecture (see Section 4.2) was extended to support network
data analysis (e.g., workload, QoS, anomalies) via Network Data Analytics
Function (NWDAF). The 5G security may subscribe to NWDAF network
analysis notifications and use them to compute policy updates. This can be
seen as feasible support for security assurance and incident response. In the
case of security assurance advanced monitoring methodologies are requested
to monitor the network behaviour and find weaknesses and unexpected be-
haviours resulting from security leakages. In terms of security incidents. An
incident detected by NWDAF can be used to trigger changes at the policy
level via PCF. For instance, it can be possible to move users from a poten-
tially compromised section or slice to a quarantine one to carry out further
investigations. Security and privacy in MEC are still open challenges [15,16].
The current literature provides only a limited overview and many aspects,
such as authentications between MEC and Core network components, re-
main quite unexplored [17]. According to Ksentini et al., [14], while slicing is
involved in MEC, other security and privacy issues arise. In MEC slicing the
traffic redirection should preserve privacy meaning that NS cannot specify a
traffic redirection policy for traffic that it does not own. In addition, the NS
should not be able to use MEC service to get unauthorized access to infor-
mation about another NS or consume MEC services that are not available
for the given NS. Other security issues may arise if an application declares in
its AppD specific traffic rules or DNS-related rules allowing traffic offloading.
A malicious app can be able to intercept traffic flows causing confidentiality
breaches and perform a kind of black hole denial of service by dropping pack-

37

Chapter 4 Telco Edge Networks

ets. According to Ksentini et al., [14], Network Slice Subnet Management
Function (NSSMF) should be augmented with security features and access
control to check the permission to ask for a traffic redirection as in their
AppD (e.g., using Public Key Infrastructure (PKI) technologies). Another
issue is the exposition of privacy-sensitive data by the MEC such as location
and channel quality. Ksentini et al., [14] suggested that for multi-tenancy
MEP, it is needed to check the MEC authorization to access specific services
providing potentially sensible information.

4.2.3 O-RAN Alliance

An important effort to reshape the Radio Access Network industry is put
forward by the Open-Radio Access Network (O-RAN) Alliance1. O-RAN
Alliance is a global consortium comprising mobile network operators, ven-
dors, and research institutions working in the Radio Access Network field.
Its primary objective is to improve the enhance RAN deployment and op-
eration efficiency for mobile operators2. O-RAN standards aim to deliver
comprehensive ML applications to RANs to enable data-driven control.

4.3 5G Network Simulator

One of the key objectives of my research has been to implement and deploy
a comprehensive and functional 5G network simulator that can be used for
research purposes in both current and future works. To achieve this, we es-
tablished the following requisites: i) the simulator must employ open-source
software to allow us to analyse, alter and publish alterations to the original
code; ii) it must conform with the existing open standards (O-RAN and the
most up-to-date 3GPP 5G revision); iii) the simulator must support Stan-
dalone deployment, with a focus on the future of 5G networks and without
the need for the retro-compatible Non-Standalone version; iv) it should be de-
ployed as a cloud-ready solution, within a containerized environment; v) the
simulator should include MANO support, that allows for the deployment of
NFs as containerized applications and provides E2C capabilities.

1https://www.o-ran.org
2https://www.o-ran.org/about

38

https://www.o-ran.org
https://www.o-ran.org/about

4.3 5G Network Simulator

The chosen package provides a Standalone 5G network adhering to the guide-
lines of 3GPP Release 15, with O-RAN architecture implemented for the RAN
segment.

4.3.1 Aether

For the 5G implementation, we opted to utilise Aether3, an open-source 5G
connected edge platform which is built upon the following Open Networking
Foundation’s projects:

• ROC: a Runtime Operational Control that manages configurations
modules for all other components of the infrastructure.

• SD-Core: a 5G Core Network stack.

• SD-RAN: a near real-time Ran Intelligent Controller (RIC) supporting
the development of xApps.

• SD-Fabric: an interface that supports a Software Defined Network
(SDN) controller.

Figure 4.4 shows the architecture of Aether.

Runtime Operational Control (ROC) It’s the brain of the Aether Project
that allows users to configure profiles and subscribers as well as implement
policies. Its architecture is shown in Figure 4.5. It is composed by three
components:

• aether-config: receives configurations and policies from Aether Portals
through REST APIs. Aether Portals has the responsibility control-
ling and observing. The control function involves pushing configura-
tions, while the observation function involves monitoring metrics. It
also offers a Graphical User Interface (GUI) to better show data to
users. Aether-Config is accountable for administering YANG models
that specify UEs, network slices, and UPFs, as well as Core NFs and
RAN functions.

3https://opennetworking.org/aether

39

https://opennetworking.org/aether

Chapter 4 Telco Edge Networks

Figure 4.4: Aether architecture.

Figure 4.5: ROC architecture.

• Workflow Engine: the workflow engine, to the left of the aether-config
stack, is where multi-step workflows may be implemented. The work-

40

4.3 5G Network Simulator

flow engine is a placeholder where workflows may be implemented in
Aether as they are required. The workflow engine is responsible for
reading and writing the aether-config data model as well as responding
to external events.

• Analytics Engine: raw metrics and analytics are processed by the an-
alytics engine, enabling users to monitor all system events using tools
such as Prometheus and Grafana.

SD-Core SD-Core4 is a mobile core implementation for 4G/5G that presents
3GPP compliant interfaces. Additionally, it effectively integrates with the
ROC specifications to allow the deployment of the Core Network as-a-service.
The Aether control plane consists of components obtained from the open-
source Free5GC project5, which implements 5G Core Network components
defined in 3GPP Release 15 and beyond, and the ONF OMEC project6, which
offers elements compliant with 3GPP Release 13. During installation, the
user may choose between the 4G (OMEC) and the 4G (Free5GC) implemen-
tations of SD-Core. The figure 4.6 summarises the previous points. SD-Core

Figure 4.6: SD-Core 4G vs 5G implementation.

4https://opennetworking.org/sd-core
5https://www.free5gc.org
6https://opennetworking.org/omec

41

https://opennetworking.org/sd-core
https://www.free5gc.org
https://opennetworking.org/omec

Chapter 4 Telco Edge Networks

provides the capability to manage subscription additions, removals, and mod-
ifications, network slice additions, updates, and deletions, and telemetry KPI
monitoring through Prometheus, demonstrated in Figure 4.7.

Figure 4.7: SD-Core Block diagram.

Finally, SD-Core implements by itself a gNodeB simulator that simulates UEs
and gNodeB (gNB). It provides registration, PDU session establishment, de-
registration, service request and ICMP data flow testing. However, Aether
project is deployed with a O-RAN compliant RAN (SD-RAN), so there is no
need to use this simulator.

SD-RAN and SD-Fabric SD-RAN7 is the 3GPP compliant software de-
fined RAN implemented by Open Networking Foundation. It is consistent

7https://opennetworking.org/open-ran

42

https://opennetworking.org/open-ran

4.3 5G Network Simulator

with the O-RAN proposed architecture. It offers a Near Real-time RIC
and support for xApps as shown in Figure 4.8. SD-RAN is built on top

Figure 4.8: SD-RAN components.

of µONOS8, an open-source SDN control and configuration platform. All the
components of the µONOS implementation compose the SD-Fabric stack.
Figure 4.9 shows the architecture of SD-Fabric9.

The main component of the SD-RAN implementation inside the µONOS
project is the µONOS RIC. Figure 4.10 shows the architecture of the RIC.
Its main components are described below:

• Software Development Kits (SDKs): the RIC is composed of Soft-
ware Development Kits (SDKs) compatible with Python10 and Go11.
Providers can build xApps using the SDKs provided to simplify the
development process and to avoid the proliferation of similar code-
patterns. xApps are applications that third parties can build to add
functionalities to the RAN ecosystem. xApps are managed by the near
real-time RIC.

8https://docs.onosproject.org
9https://docs.sd-fabric.org/master/index.html

10https://www.python.org
11https://go.dev

43

https://docs.onosproject.org
https://docs.sd-fabric.org/master/index.html
https://www.python.org
https://go.dev

Chapter 4 Telco Edge Networks

Figure 4.9: SD-Fabric architecture.

Figure 4.10: µONOS RIC components.

• onos-topo: the main purpose of onos-topo is to provide an abstract rep-
resentation of the network topology by gathering information about

44

4.3 5G Network Simulator

the network’s devices, links, and connectivity. It interacts with net-
work controllers and devices to obtain real-time information about the
network’s state and dynamically updates the network topology accord-
ingly.

• onos-uenib: tracks and disseminates information about the UEs.

• Atomix Controller: by utilizing the Atomix Controller, ONOS can
manage distributed resources, coordinate network operations, and main-
tain a consistent network view across multiple nodes in the ONOS clus-
ter. This enables ONOS to provide robust and scalable network control
and management capabilities for SDN environments. It can for exam-
ple offer storage facilities for applications to maintain their state in a
distributed, scalable and highly-available manner.

• onos-cli: it provides a set of commands that enable users to manage
and configure the network, monitor network devices and traffic, retrieve
network information, and perform various administrative tasks.

• onos-operator: the component responsible for deploying, operating and
managing the components over Kubernetes.

• onos-config: provides a unified approach to configure network devices in
a vendor-agnostic manner. It abstracts the details of different device-
specific configuration protocols and presents a common interface for
configuring and managing network devices within the ONOS controller.

• onos-exporter: the onos-exporter enables the extraction and transmis-
sion of network-related metrics, statistics, and events generated by the
ONOS controller to external systems for further analysis, visualization,
or storage. It provides a means to integrate ONOS with third-party
monitoring tools, network management systems, or data analytics plat-
forms.

• A1t: handles external JSON/HTTP REST API requests from north-
bound orchestration systems and non-real time applications, but it is
currently under development.

• onos-e2t: provides the services to facilitate the exchange of control and
management information between various network components, such as

45

Chapter 4 Telco Edge Networks

the Central Unit (CU), Distributed Unit (DU), and Radio Unit (RU).
These components collectively form the base station or radio access
point in a 5G network as described in Section 4.2. E2 nodes facilitate
coordination and synchronization among different network elements,
ensuring efficient resource allocation and management within the radio
access network. They also handle the exchange of control signalling
messages, enabling the configuration, control, and orchestration of ra-
dio access network functions, and, finally, they enforce policies related
to radio resource management, traffic prioritization, and QoS enforce-
ment within the network.

Why Aether?

We opted to implement the 5G network via Aether because it is the most
complete package available nowadays. It offers 5G Core components compli-
ant with 3GPP Release 15 and RAN components compliant with O-RAN’s
architecture. We tried and analysed many different solutions before choosing
Aether:

• Mosaic5G12: it offers a complete 5G stack based on Open Air Inter-
face (OAI13) 5G Core Network, OAI RAN, OAI User Equipment and
FlexRIC (a RIC built on O-RAN’s architecture). A valuable option
but it requires to sign a partnership with the group.

• free5GC14 + UERANSIM15 (towards5GS-helm16): it offers the same
5G Core Network as Aether but the RAN part is not O-RAN compliant.

• Open AI Cellular (OAIC)17: it offers a O-RAN compliant RIC and uses
srsRAN18 as the RAN simulator (a 5G non-standalone version of the
RAN not deployed on Kubernetes). However, it does not offer the 5G
Core Network.

12https://gitlab.eurecom.fr/mosaic5g/mosaic5g
13https://openairinterface.org
14https://www.free5gc.org
15https://github.com/aligungr/UERANSIM
16https://github.com/Orange-OpenSource/towards5gs-helm
17https://openaicellular.github.io/oaic
18https://www.srslte.com

46

https://gitlab.eurecom.fr/mosaic5g/mosaic5g
https://openairinterface.org
https://www.free5gc.org
https://github.com/aligungr/UERANSIM
https://github.com/Orange-OpenSource/towards5gs-helm
https://openaicellular.github.io/oaic
https://www.srslte.com

4.3 5G Network Simulator

Finally, it is worth to mention that Aether is offered by Open Networking
Foundation (ONF) as an open-source platform and so it’s possible to retrieve
the source code for further developments and researches. Table 4.2 shows a
comparison between the different 5G solutions.

Table 4.2: Comparison between the different 5G implementations available in
literature.

Solution Open source Core Network RAN 3GPP O-RAN
Mosaic5G With partnership Yes Yes Yes Yes
towards5GS-helm Yes Yes Yes Yes No
OAIC Yes No Yes - Yes
Aether Yes Yes Yes Yes Yes

4.3.2 NFV orchestrator and MEC applications

For the implementation of the MEC part of the Testbed we relied on OSM19

Release 13. OSM is an open-source MANO stack capable of automating
network services by minimizing integration efforts. OSM is built on top of
two key aspects:

Figure 4.11: OSM alignment with ETSI NFV.

• A well-known Information Model (IM): it is aligned with ETSI NFV
19https://osm.etsi.org.

47

https://osm.etsi.org

Chapter 4 Telco Edge Networks

standard to support the full automated management of network func-
tions (virtual VNFs, cloud-native Cloud-native Network Functions (CNFs),
physical PNFs), network services and also network slices. This lifecycle
management comprises instantiation, prior configurations (Day-0, Day-
1) and, finally, their daily monitoring (Day-2). The IM aligned with
ETSI NFV permits to do all these operations in an “infrastructure-
agnostic” manner enabling support for a large variety of VIMs. Fig-
ure 4.11 shows the alignment between OSM and ETSI NFV architec-
ture.

• A unified North Bound Interface (NBI): the NBI enables all the oper-
ations described in the Information Model over network services and
network slices instances. It offers APIs to interact with them.

Figure 4.12 shows IM operations via NBI20. OSM can be intended as a

Figure 4.12: IM operation via NBI.

provider of network services on demand, in fact a network service bundles
in one single service object a set of interconnected network functions (CNFs
in our use case) which can run on different infrastructures underneath and
in different geographical areas. All of these is obtained through API calls to
NBI and descriptors following the model defined by ETSI. The lifecycle of a
network service follows precise steps:

20https://osm.etsi.org/wikipub/index.php/OSM_Scope_and_Functionality

48

https://osm.etsi.org/wikipub/index.php/OSM_Scope_and_Functionality

4.3 5G Network Simulator

• Modelling: the Information Model provides mechanisms to define the
complete expected behaviour of the network service, including its topol-
ogy, its automation code and its lifecycle operations. Since network
services are composed by different network functions that can come
from different providers, the IM standardizes them.

• On-boarding: the models are loaded on OSM via NBI APIs. These
APIs offer Create, Read, Update, Delete (CRUD) operations over the
models. OSM provides support to the on-boarding of network func-
tion packages (the set of network functions of the network service to
be deployed) and network service packages (that define the network
service).

• Network service creation: in this phase, OSM interacts with the VIM
and the network functions to create the instance of the network service.

• Network service operation: the instance created during the previous
stage is subjected to different types of operations. For example scal-
ing actions, monitoring, upgrades, but also service specific operations
defined inside the network service package. It is important to mention
the possibility of exporting metrics. This turns out to be, as we will
see, very important for the extension of NFV components to integrate
intents.

• Network service finalization: it is possible to remove all the resources
that had been assigned to a network service, preserving the components
that should not be removed like persistent volumes.

OSM consists of several key modules that work together to enable the man-
agement and orchestration of network services. Here is an overview of the
main modules (Figure 4.13 shows them):

• NBI: the NBI module provides the interface for external entities, such
as service orchestrators or operation support systems, to interact with
the OSM system. It allows for the creation, modification, and deletion
of network services, as well as monitoring and reporting of their status
as we said before.

• LCM: the LCM module is responsible for managing the lifecycle of

49

Chapter 4 Telco Edge Networks

network services and VNFs. It handles tasks like instantiation, scaling,
healing, upgrading, and termination of services. LCM ensures that the
network services are deployed and maintained according to the defined
policies and service level agreements.

• RO: the RO module is in charge of managing the underlying physical
and virtual resources required for the deployment and operation of
network services. It interacts with the infrastructure controllers and
allocates resources based on the service requirements, such as compute,
storage, and network resources.

• VCA: the VCA module focuses on managing the virtualised compute
resources, including VMs or containers. It handles tasks like VM life-
cycle management, placement, scaling, and monitoring. VCA works
closely with the RO module to ensure efficient resource utilization.

• POL: the POL module enables the definition and enforcement of poli-
cies related to network service management and orchestration. It allows
operators to set rules and constraints for service instantiation, scaling,
placement, and other aspects. POL ensures that the system operates
within the defined policies and governance guidelines.

• MON: the MON module provides real-time monitoring and perfor-
mance measurement capabilities for the network services and infras-
tructure components. It collects data from various sources, such as
VNFs, virtual infrastructure managers, and physical resources, to mon-
itor the health, performance, and availability of the network services.
It basically serves as the metric exporter used to get the relevant met-
rics. Prometheus is the solution chosen by the developers of OSM to
get the metrics from the infrastructure and from the single VNFD in-
stances. As we will explain later on, OSM’s Prometheus instance is
fundamental in our research because it permits us to retrieve the avail-
able computational resources on the Kubernetes cluster on which the
CNFs are going to be deployed.

• Kafka bus: the Kafka bus in OSM facilitates the flow of information
between modules. It allows them to communicate asynchronously and
decoupled from one another, enabling better scalability, fault tolerance,
and flexibility in the system.

50

4.3 5G Network Simulator

Figure 4.13: OSM modules.

In our deployment we decided to use Charmed OSM21, a package developed
and maintained by Canonical22 that provides by default an installation of Mi-
croK8s23, MicroStack24 and a minimal installation of Open Source MANO.
MicroK8s is a lightweight version of Kubernetes that is fully conformant and
works perfectly on any Linux machine. MicroStack is the Virtual Infrastruc-
ture Manager for our NFV implementation. We opted for this deployment
flavor because MicroStack offers native support for MicroK8s; OSM can in-
terface with MicroK8s APIs to manage and configure CNFs, and with Mi-
croStack APIs to manage virtual resources used by the CNFs. In this way
OSM can automate and simplify the creation, configuration, management
and destruction of virtual resources required by the CNFs, improving the
efficiency and scalability of the infrastructure.

The “Charmed” version of OSM offers Juju25 as an alternative to Helm to
deploy cloud infrastructure and applications and manage their operations
from Day 0 to Day 2. Nowadays, Helm is the most used package manager
for Kubernetes, but ETSI standards opened the door to this new type of
21https://charmed-osm.com.
22https://canonical.com.
23https://microk8s.io.
24https://microstack.run.
25https://juju.is.

51

https://charmed-osm.com
https://canonical.com
https://microk8s.io
https://microstack.run
https://juju.is

Chapter 4 Telco Edge Networks

deployment flavor.

The installation procedure is quite straight forward and needs only to link
the MicroK8s cluster generated by the installation script to the MicroStack
VIM. OSM offers a command line interface osmclient and a GUI to interact
with the NBI for operations from Day-0 to Day-2.

Why OSM?

Choosing OSM over other NFV orchestrators like ONAP26, Cisco NSO27,
and Huawei MANO28 can be driven by several factors. OSM closely aligns
with the specifications and standards set by the European Telecommunica-
tions Standards Institute (ETSI) NFV framework. This compliance ensures
interoperability with other NFV components, simplifying integration with
existing network infrastructure and reducing vendor lock-in. OSM’s adher-
ence to industry standards can provide a more stable and widely supported
solution. It is also an open-source NFV orchestrator, offering the benefits
of community-driven development and collaborative innovation. The active
participation of a diverse community fosters continuous enhancements, bug
fixes, and the development of new features (their objective is to provide two
releases per year and support to Long Term Service). Finally, OSM has
been proved to be as an efficient orchestrator when developing Intent Based
Networking. This abstraction promotes agility, reduces manual configuration
efforts, and enhances service delivery velocity.

4.4 Automation in networks: Intent Based
Networking and services

The manual configuration of network infrastructures implementing SDN, NFV,
MEC architectures could lead to human error and in addition, the elimination
26https://www.onap.org
27https://www.cisco.com/c/en/us/products/cloud-systems-management/network-

services-orchestrator/index.html
28https://carrier.huawei.com/en/solutions/cloud-enabled-digital-operations/

mano-solution

52

https://www.onap.org
https://www.cisco.com/c/en/us/products/cloud-systems-management/network-services-orchestrator/index.html
https://www.cisco.com/c/en/us/products/cloud-systems-management/network-services-orchestrator/index.html
https://carrier.huawei.com/en/solutions/cloud-enabled-digital-operations/mano-solution
https://carrier.huawei.com/en/solutions/cloud-enabled-digital-operations/mano-solution

4.4 Automation in networks: Intent Based Networking and services

of the expertise as a requirement to handle these types of system could be a
valuable simplification of the overall chain of processes to manage them. Net-
work automation is one of the key themes that Telco researchers are coping.
Intent Based Networking (IBN) is a novel technology for network automation
that can dynamically adapt to applications and services. The authors of [18]
define an intent as “a set of operational goals (that a network is supposed
to meet) and outcomes (that a network is supposed to deliver) defined in a
declarative manner without specifying how to achieve or implement them”.
The idea behind IBN aims to lead towards networks that require only minimal
outside intervention using intents to define goals and outcomes in a declara-
tive way, specifying what to accomplish, not how to achieve it: i) Users do
not need to know low-level logic. ii) Users do not need to be concerned with
how to achieve a given intent. In [19] the authors define important properties
that an intent must have in the context of autonomous networks:

• Intent is comprehensible: it has to be understandable by humans, while
being formally and unambiguously specified to be processable by ma-
chines (e.g., natural language should be an option).

• Intent is declarative: it gives hints for finding the optimal solution
without specifying it. Intent declares the wanted results rather than
prescribing a specific solution. Ideally, intent describes the properties
of a satisfactory outcome rather than requiring a specific outcome.

• Intent is infrastructure agnostic and portable: the expectation ex-
pressed by intent originates from contracts and business strategy. It
does not change if the underlying system is replaced or modified. While
implementation and capability differences between system vendors will
continue to exist, intent can be ported between system generations and
implementations.

• Intent is complete: intent defines all goals and expected behaviour.
If it is not specified as intent, it is not a goal the system needs to
consider. This also means that concerns that were common sense in
human operated systems would need to become explicitly expressed as
intent.

• Intent is composable: multiple intents are given to the Autonomous
Networks and it is expected to consider them all together. Unlike
traditional software systems, where requirements are analysed offline to

53

Chapter 4 Telco Edge Networks

detect and resolve conflicts prior to implementation, intents are added
during runtime. Therefore, an essential capability of an autonomous
system would be to detect and resolve conflicts.

• Intent is persistent: intent is valid as long as the goals and requirements
it expresses are relevant. For example, an intent that specifies that a
service needs to be delivered would not become invalid once the service
is initially provisioned. Intent is rather the reason for keeping the
service operational and assuring its performance. Therefore, intent has
a lifecycle that is actively managed by the user or function that has
generated it.

• Intent is measurable: it uses measurable and ideally standardized met-
rics to define the target state. This allows automated evaluation of
success as well as identification of issues and optimization opportuni-
ties.

An example of intent could be the following: “Minimize network latency even
if it means degrading other parameters like packet loss unless packet loss
reaches the threshold X”. A network architecture implementing IBN should
be able to translate that intent into device-specific rules and courses of action
to guarantee that the content of the intent is satisfied. It means that the IBN
components of the network should be able to continuously check if the intent
is satisfied or not and if it is not, the network should apply some types of
intervention to correct the issue.

One of the main characteristics of an Intent Based System (IBS) is its ability
to learn. In contrast to Policy Based Systems that simply apply rules, IBSs
create the conditions for continuous learning and optimization. This type
of process is called “Cognitive Loop”. The intent cognitive loop shown in
Figure 4.14 is divided in five phases:

• Measurement: in this phase the system is continuously checked to verify
if all the intents declared are being satisfied. This is a critical phase
of the cognitive loop because it needs to continuously be in touch with
monitoring applications on the hosts. Hosts are required to export
metrics in a way that measurement agents are capable to understand
(e.g., Prometheus, a well-known open-source monitoring and alerting
system, supports a variety of exporters that can collect and export

54

4.4 Automation in networks: Intent Based Networking and services

Figure 4.14: IBN cognitive loop [20].

metrics from various sources, including HTTP endpoints, databases,
and messaging systems). Finally, this phase uses predictive models to
anticipate the onset of problems.

• Issues: if one or more intents are not satisfied what should the system
do to change this situation? Special entities called “Assurance agents”
verify what needs to be fixed in order to satisfy the intents.

• Solutions: “Proposal agents” propose solutions to fix the issue by re-
ceiving as input the issues found by Assurance agents. Typically, the
solution proposed by a Proposal agent aims to improve just one metric;
this could raise other problems for example when more than one req-
uisite need to be fixed inside the same intent (e.g., a proposed solution
can fix the value of a parameter that was preventing the intent to be
satisfied but only incrementing other parameters that the intent should
also guarantee).

• Evaluation: “Evaluation Agents” choose the best solution among those
proposed by trying to predict which one will have the best impact on
the system.

55

Chapter 4 Telco Edge Networks

• Actuation: the preferred solution is applied in this phase.

4.5 Satellite networks

Communications satellites provide connectivity and services in remote and in-
accessible locations.Over the past decade, they have served mainly as network
bridges and repeaters, but now researchers are investigating their potential as
edge nodes. They can act as service hosts and provide intermediate computa-
tion capabilities. While satellite networks share many similarities with more
common 5G and LTE networks, they operate in a harsher and more complex
environment. Firstly, it is important to note that resource constraints are
not solely dependent on node computational abilities, such as processor fre-
quency or available memory, but also on the availability of power generated
by the satellite’s solar panels and stored in its accumulators. Additionally,
the dissipation rate of heat provided by the radiators also plays a crucial role
in limiting resources. These constraints vary according to the quantity of
electricity collected or heat dissipated.

The prevailing software deployment architectures on the satellite edge are
built around minimal distribution of Kubernetes, such as KubeEdge29 or
K3S30. These solutions connect Kubernetes agents hosted on edge nodes to a
central controller service, which handles resource management and configura-
tion of the cluster. The agents, which are hosting containerised applications,
require very limited resources and can be deployed even on small System-
on-a-Chip (SoC) platforms, such as Raspberry Pis31 or similar hardware.
KubeEdge additionally incorporates a Message Queuing Telemetry Transport
(MQTT) broker to facilitate seamless integration between the edge node and
other devices on the same network, for instance in IoT edge deployments.
The controller service is responsible for monitoring the activity of connected
nodes and managing the life-cycle of service deployments.

The satellite edge field is in its infancy and still has numerous gaps to be
addressed:

29https://kubeedge.io
30https://k3s.io
31https://www.raspberrypi.com

56

https://kubeedge.io
https://k3s.io
https://www.raspberrypi.com

4.5 Satellite networks

Monitoring Satellites operate within an extremely unforgiving environ-
ment and endure harsh conditions during deployment and throughout their
operational lifespan. Thorough monitoring is essential to detect misbehaviour,
perform predictive maintenance [21, 22] (where possible) and collect data to
improve the next generation of satellites.

Deployment reliability and availability Reliability is essential at all
satellite system levels. However, current deployment solutions are tailored
for Cloud-Edge environments and depend heavily on the dependability of the
underlying platforms. Moreover, these solutions overlook the specific power
and heat dissipation budgets of satellites.

Intercompatability between networks Satellite networks are often closed
systems controlled by a single entity or organization that may collaborate with
multiple Internet Service Provider (ISP). As a result, satellite networks are
strictly separated and cannot communicate directly with each other without
using a ground station. More open intercommunication would enable the es-
tablishment of a mesh network similar to the Internet on the ground, with
all its accompanying benefits.

Heterogeneity and Closure Satellite platforms typically employ custom
hardware that is project-specific and may undergo multiple revisions over
time. This can introduce internal heterogeneity, software management com-
plexity and the risk of undefined behaviour. Therefore, when deploying ap-
plications on such platforms, it is important to consider these factors.

Our research aims to enhance the dependability of services installed on satel-
lite edge nodes by introducing more sophisticated and comprehensive moni-
toring and assurance capabilities to the deployment platform, while consid-
ering its dynamicity and limitations. In order to achieve this, we suggest
two ways of extending the Satellite system: i) firstly, enhancing the monitor-
ing capabilities of the edge nodes regarding the hosted services and satellite
infrastructure; ii) secondly, implementing an assurance-specific service that
collects monitoring events, calculates metrics from the host (satellite) and the
services, and provides assurance levels measuring non-functional properties,
including reliability, privacy, security, and performance.

57

Chapter 4 Telco Edge Networks

4.6 IoT networks

IoT networks are private networks comprising physical devices that commu-
nicate and exchange data with one another. The devices connected to these
networks are show high heterogeneity and may include different functions,
such as sensors, actuators, monitoring, and alerting. Moreover, these devices
may use different technologies, including 5G, WiFi, Bluetooth, ZigBee, and
Lora. In addition to this, the network size may range from relatively small,
such as a single household, to extensive enough to cover a large city. Network-
ing protocols and technologies are diverse and often proprietary and heavily
regulated by the device manufacturer, often resulting in complete reliance on
the manufacturer for compatibility, support and security patches. A com-
promised device could serve as a pivot point of attack within the network,
requiring us to minimise trust in other devices and in the network itself. The
IoT field is nascent and has a multiple gaps remain to be addressed:

Authentication and authorisation numerous IoT devices implement in-
adequate authentication techniques and frequently employ simplistic or de-
fault passwords that users do not modify, resulting in increased vulnerability
to security breaches. It is also common for these devices to lack a strong
mechanism for verifying the identity and permissions of users and other de-
vices that communicate with them.

Encryption data in transit and at rest on the device may lack encryption,
resulting in user data being exposed to attacks and being compromised. It is
unfortunate that data contained in IoT devices is often deemed insignificant
for privacy. However, even sensor or usage data can reveal information about
a user’s habits.

Vulnerabilities in Firmware IoT devices frequently lack sufficient qual-
ity assurance in their software implementation, as manufacturers are not re-
quired to disclose their source code for verification and certification, leaving
security and privacy gaps unpatched and undisclosed. Recent security scan-

58

4.6 IoT networks

dals involving IoT devices3233 and their insecure implementation are just the
last episodes of a more deeply rooted issue of lack of (or limited) liability for
companies not securing their products.

Patches and updates privileged access to certain internal components of
the device, namely the system memory and the trust chain, is essential for
updating the device’s software. Regrettably, these components are often inad-
equately secured, leaving them vulnerable to compromised firmware updates
that may contain rootkits and backdoors34.

Insecure Communication Protocols and Channels IoT devices may
rely on communication channels that are inherently secure. Potential secu-
rity flaws include include unencrypted HyperText Transfer Protocol (HTTP)
traffic, insecure SNMP versions or WiFi networks with inadequate security
levels. Currently, IoT devices, particularly those aimed at consumers, priori-
tise compatibility rove security and privacy. The device must always adopt
to a secure behaviour, either by using secure channels if viable or by declining
to share data insecurely (unless forced to do so by the user after being clearly
informed about the associated risks).

Locality and sovereignty IoT devices, in particular those aimed to the
consumer market, tend to offer Cloud-based services, such as remote control
and monitoring capabilities. This feature is much appreciated by users but it
makes their data at risk of being collected and exploited by the Cloud Service
Provider (CSP). If the data does not follow a correct end to end encryption
approach, private information such as user behaviour and camera images may
be leaked to the provider. Moreover, even if the channel is securely encrypted,
much information about the user can still be inferred by the device behaviour
(network traffic, frequency of updates, flow of execution) [23,24].

32https://www.theverge.com/2022/11/30/23486753/anker-eufy-security-camera-
cloud-private-encryption-authentication-storage

33https://www.bbc.com/news/technology-23971118
34https://defcon.org/html/defcon-31/dc-31-speakers.html#Giese

59

https://www.theverge.com/2022/11/30/23486753/anker-eufy-security-camera-cloud-private-encryption-authentication-storage
https://www.theverge.com/2022/11/30/23486753/anker-eufy-security-camera-cloud-private-encryption-authentication-storage
https://www.bbc.com/news/technology-23971118
https://defcon.org/html/defcon-31/dc-31-speakers.html#Giese

Chapter 5

Assurance of Telco Edge
Networks

The 5G core network is a composition of services that tightly collaborate to
provide network functionalities, i.e. traffic routing, user authentication, radio
management. Research on 5G services mostly focused on functional aspects
of 5G network and services, often neglecting assurance solutions verifying and
maintaining its NFPs. Currently, the 5G-edge ecosystem is mostly focusing
on performance properties, that is, latency, data rate, and connection density
of the network, as they are the most interesting for ordinary consumers [25].
While their importance is significant and provides a good point of view on
the services’ status, there are aspects that are left out of the picture. Users
may want to know in advance the profile of services running in a certain host,
providing stronger guarantees in the form of SLAs. For instance, properties
such as parallel data ingestion are particularly important for massive IoT
networks and for service deployment scheduling, as they can help to identify
the best deployment solution during the decision process [26].

In this context, the collection and measurement of Key Performance indica-
tors (KPIs) such as memory, network bandwidth and computational power
consumption are fundamental to develop assurance solutions aiming to verify
NFPs of 5G network and services. The formalization of such properties is
especially useful in commercial scenarios, where the service providers need to
quantify, and possibly certify, the capabilities of their services to clients. The

61

Chapter 5 Assurance of Telco Edge Networks

services in the 5G core network periodically measure their KPIs and expose
the information to other NFs using standardized APIs. The current API is
however limited to the performance metrics and does not provide easy means
to extend its capabilities, restricting its functionalities and flexibility. Let us
consider the scenario where a user that needs total isolation for their services,
requiring the node to not be shared with others.

5.1 Research objective

Our research objective is to extend the monitoring mechanism of the 5G core
network services by expanding the set of NF metrics [27]. To this aim, we
propose a specialized assurance component that aggregates the collected mea-
surements, validates the system state against abstract representations, and
exposes the relevant information through an extensible interface. Such com-
ponent extends the 5G network with data logging, model checking, anomaly
detection, and metrics prediction capabilities. It is important to note that
since part of the collected data may be complex or sensitive, the new com-
ponent has to expose a query interface abstracting the underlying layers and
providing access control capabilities. This approach can also simplify inte-
gration with other services, such as deployment schedulers and NFs deployed
on the node.

The core network extension in this work introduces several new assurance
functionalities providing benefits for both the network providers and its users.
The additional metrics permit to define more specific and diverse SLOs and to
better specify the deployments requirements. The newly introduced compo-
nent permits to identify possible issues with deployment configurations and to
verify compliance against specific SLAs. Finally, the API supports simplified
integration with other services, which can provide enhanced functionalities
based on additional non-functional information.

62

5.2 Motivating Scenario: 5G enabled edge computing

5.2 Motivating Scenario: 5G enabled edge
computing

In this section, we present our motivating scenario to show the feasibility and
utility of our infrastructure assurance methodology applied to a multi-level
service deployment with edge-cloud continuum capabilities using 5G enabled
networks. The 5G Core network infrastructure, thanks to MEC will be in-
creasingly involved in business process, such as vehicular network, critical
health applications and smart cities, to name but a few. In the near future
MEC will play a fundamental role in Cloud Edge Continuum, providing stan-
dardized high reliability infrastructure for service delivery and execution. In
such scenario the deployment is distributed across edge and cloud compu-
tation nodes, exploiting the capabilities provided by the 5G core network,
such as low latency and locality of the computation. Common applications
of such techniques are to provide low latency services in mobile contexts,
hardware acceleration and resources to low power devices for computation
offloading and to preprocess streams of data before forwarding it to the cloud
e.g., filtering and compressing information coming from large groups of IoT
devices.

Business ready solutions for this kind of deployment are already available to
the public in some regions (e.g., Amazon Web Services (AWS) wavelength,
Google Distributed Cloud and Microsoft Azure private MEC) and are ex-
pected to become more common in the next years as the number of ISPs
providing similar solutions grows.

The properties of the service composition are the ones associated to its cloud
and edge components. This includes properties previously studied in litera-
ture, such as [28–30]

While performance SLAs and monitoring techniques are already present and
common in both cloud and edge environments, these platforms are lacking in
assurance and certification solutions to allow verification of low level NFPs.
Although cloud-ready monitoring solutions, such as the widely established
Prometheus1 and the newer and more extensive OpenTelemetry2, are fre-
quently employed in production environments, their deployment displays a

1https://prometheus.io
2https://opentelemetry.io

63

https://prometheus.io
https://opentelemetry.io

Chapter 5 Assurance of Telco Edge Networks

significant lack of consistency. More specifically, the services monitoring im-
plementations do not follow a common service-level metrics standard, so that
contracts have to be defined on a per-component implementation basis. This
substantially limits the transparency while comparing alternative solutions
and makes contracts definition more cumbersome. Verification and certifi-
cation of NFPs are of interest to the services’ users, especially in safety or
privacy critical applications e.g., health and automotive. This work focuses
on defining a more fine-grained framework for verifying NFPs associated with
functionalities in such a way that it is transparent to the environment and
their specific implementation.

5.3 Actors

Our model identifies three types of actors interacting with each other.

Telco providers offer 5G solutions to deploy services in the edge nodes.
They interface with the other actors as infrastructure and/or hosting service
providers, provisioning both the networking and execution resources neces-
sary for to run the services.

Cloud service providers offer users the infrastructure and management
capabilities necessary to deploy and monitor services. They are interested in
expanding their facilities by integrating their systems with the ones owned
by telco providers, complementing their services with user-local hosting ca-
pabilities.

Cloud service users deploy their services on CSPs infrastructures and are
interested in achieving the best performances at the smallest price. They are
also interested in maintaining control on the NFPs of both their services and,
by extension, the ones linked to the hosting platform.

64

5.3 Actors

5.3.1 5G core network services

Table 5.1 lists the services composing the 5G core network and resumes their
purposes. Figure 5.1 shows how the core network is composed and how the
services are connected.

Table 5.1: Core network services and their purposes.

Service Description
Host Provides the resources required for the CNs to operate and

manages their processes life-cycle
NSSF Network slice selection service focusing on resource optimiza-

tion
NEF Access control to CN’s internal data and management of col-

laboration with other networks
NRF NF’s service discovery
PCF User policies management and charging handler function
MEC CNF and VNF deployment and management platform
AUSF Authentication server
AMF Devices authentication, access control, encryption and session

authorization
SMF Session management service, UE IP address allocation and

management, DHCP, NAS signalling, traffic steering
UDM Service that manages user related data from other processes
UE A device that connects to the core network through radio com-

munication
RAN Radio network infrastructure (antennas and controllers)
UPF Packet routing and forwarding, packet inspection, QoS han-

dling,
LADN Private network or bridge to the public Internet

65

Chapter 5 Assurance of Telco Edge Networks

NSSF NEF NRF PCF

AUSF AMF SMF UDM Other NFs

UPFRAN

MEC

UE LADN

N1 N2

N3 N6

N4

Figure 5.1: Scheme of the 5G core network architecture.

5.4 5G Functionalities

Table 5.2 describes peculiar 5G functionalities that can be of interest for
an application workflow, a subset of which is modelled in this work. We
also mentioned the 5G core network services collaborating to achieve the
functionality. In Table 5.3 we list 5G functionalities that are not available
yet, but can be implemented with limited effort to complement the actual
functionalities.

Table 5.2: 5G core network implemented functionalities.

Id Name Description Core
network
components

f1 DN-level
connectivity

The CN can connect to the
DN

RAN, UPF,
SMF

f2 RAN-level
connectivity

The CN can connect to the
UEs through its RAN

RAN, UPF,
SMF

f3 UE-DN routing Network packet routing from
UEs to DN

RAN, UPF,
SMF

f4 UE-NF routing Network packet routing from
UEs to NFs

RAN, UPF,
SMF

f5 NF-DN routing Network packet routing from
NFs to DN

RAN, UPF,
SMF

66

5.4 5G Functionalities

f6 Massive IoT
Networks

Connection with large num-
ber of IoT devices

Host, RAN

f7 Low Latency
Networks

Low latency networking
functionalities on mobile de-
vices, providing fast access
to the edge nodes and to the
cloud

Host, RAN

f8 Network hop-based
deployment
selection

The deployment host can
be selected on the number
of network hops required to
reach a given application

Host, MEC,
NRF

f9 RTT-based
deployment
selection

The deployment host can
be selected on the latency
reaching a given application

Host

f10 Secure network
channels

The CN provides secure
channels for the deployed ap-
plications

Host, MEC,
RAN

f11 Private network
slice management

5G offers network slices as
private networks with SLO
negotiation

RAN, UPF,
SMF, NSSF

f12 Bandwidth
allocation

Network bandwidth alloca-
tion

Host, MEC

f13 CPU allocation CPU timeshares allocation Host, MEC
f14 RAM allocation Memory allocation Host, MEC
f15 Hardware

acceleration
Hardware accelerator alloca-
tion

Host, MEC

f16 CNF-based
application
deployment

The CN can be the target of
a CNF-based deployment

Host, NEF,
SMF

f17 VNF-based
application
deployment

The CN can be the target of
a VNF-based deployment

Host, NEF,
SMF, MEC

67

Chapter 5 Assurance of Telco Edge Networks

f18 Policy management Core network policy man-
agement (users, applica-
tions, network routing)

Host, NEF,
MEC

f19 Tenant management The CN provides tenant
management policies (i.e.,
limit one user per node)

Host, MEC

f20 Certifications
exposure

Platform certificates are ex-
posed and available to the
user

Host, MEC,
RAN

f21 Protocol compliance The NFs are compliant with
a given protocol (storage,
network, deployment)

Host, MEC,
RAN, NRF

f22 UE-based
Identification

UEs and their users can
be uniquely identified in the
network by the device IMEI
and (e)SIM identifiers

Host, RAN,
UDM

f23 Ephemeral storage The CN provides an
ephemeral storage service

Host

f24 Permanent storage
service

The CN provides an perma-
nent storage service

Host, NEF

f25 Storage level
integrity

The CN storage provides
integrity guarantees (hard-
ware redundancy, data repli-
cation)

Host, MEC,
RAN

f26 Storage level
encryption

The CN storage is encrypted Host, MEC,
RAN

68

5.4 5G Functionalities

Table 5.3: 5G core network functionalities likely available in the near future.

Id Name Description Core
network
components

f27 Private
Cross-Network
Slices

CNs’ functionality of collabo-
rating with each other to form
inter-network and inter-ISP pri-
vate network slices. This allows
the creation of secure channels
across a variety of networks

RAN, NEF

f28 Contextual
Deployment
Policies

The controller that manages ap-
plication deployments in the 5G
network is aware of the con-
text and can be extended to
support more advanced require-
ments than resource constraints,
including privacy and availabil-
ity NFPs

Host, NEF

f29 Geo-based
deployment
selection

The deployment host can be se-
lected on its geographical posi-
tion

Host, NEF

f30 Geo-fenced
applications

f28 can be extended with f29 to
support user-defined geograph-
ical barriers, so that data and
applications cannot accidentally
be shared outside the selected
region

Host, NEF,
MEC

f31 UE-based
authentication

UE-based authentication ser-
vice extending f22

RAN, SMF,
AMF, NEF

f32 UE-Edge
Resource
Sharing

f7 and f11 allow to link UE with
resources on the edge network
using private and low-latency
connections

Host, NEF,
RAN

69

Chapter 5 Assurance of Telco Edge Networks

f33 Distributed
permanent
storage

The edge network can extend
f24 acting as a fast-access in-
termediate layer in a distributed
storage solution

Host, NEF

f34 UE-unique
encryption

Extends f23 and f24 with a UE-
unique transparent encryption
layer

Host, MEC,
RAN, PCF

f35 Storage Certified
Ephemerality

f28 can help track the accessed
resources providing f23 with cer-
tified ephemerality

Host, MEC,
RAN, PCF

f36 Secure
deployment
channels

The f11 and f27 capabilities of
the 5G network can be used to
provide both the users and the
applications with secure chan-
nels applying a transparent en-
cryption layer on any channel
within and outgoing the net-
work

Host, MEC,
RAN, NEF

f37 Deployment
isolation

We can extend f28 to support
isolated deployment strategies,
where one user can allocate the
full edge node

Host, MEC

f38 Multi-ISP
deployment
(service
roaming)

We extend f11 and f28 to al-
low continuous application de-
ployment and migration across
ISPs, moving the applications to
another hoster once the SLOs
cannot be respected

Host, MEC,
NEF

5.5 5G Properties

Table 5.4 contains the definitions of the fine-grained NFPs of interest given
the 5G functionalities in Section 5.4.

70

5.5 5G Properties

Table 5.4: 5G network properties.

Id Name Types Function-
alities

Description

p1 Network
connection
availability

tavail f1, f2, f3,
f4, f5

The infrastructure pro-
vides network connec-
tion capabilities to and
from its applications
and devices

p2 Network
deployment
availability

tavail f12, f13,
f14, f15,
f16, f17,
f18

The infrastructure
meets all the re-
quirements for the
deployment of a given
application

p3 Network capacity
availability

tavail f6 The infrastructure can
accept new connections

p4 Network latency
performance

tperf f7, f9 Network infrastructure
with minimal latency
to a certain application

p5 Network hops
performance

tperf f7, f8 Network infrastructure
with minimal number
of hops to a certain ap-
plication

p6 Network
confidentiality

tconf f10 Can provide secure net-
work channels

p7 Cross-network
availability

tavail f27 The CN can coordinate
with other networks

p8 Network
management
automation

tauto f18, f19 The network manages
its configuration auto-
matically

p9 Storage
availability

tavail f23, f24,
f33

Can guarantee storage
availability

p10 Storage
confidentiality

tconf f26, f31,
f34

Can guarantee storage
confidentiality

71

Chapter 5 Assurance of Telco Edge Networks

p11 Data deletion
traceability

tconf f23, f35 Ephemeral data is
guaranteed to be
deleted as soon as
not required by the
user (data deletion
traceability)

p12 Storage UE-based
access control

tconf f34 The infrastructure pro-
vides UE-based encryp-
tion capabilities to the
storage service

p13 Storage integrity tinte f25 Can guarantee storage
integrity

p14 Geographical
vicinity

tconf ,
tperf

f29 The target UE is con-
nected to the geograph-
ically closest infrastruc-
ture’s node

p15 Deployment
availability

tavail f12, f13,
f14, f15,
f16, f17

The infrastructure can
be used to deploy appli-
cations

p16 Exposed host
certifications

tauto,
tavail,
tconf ,
tinte,
tperf

f20, f21 Valid external cer-
tifications of the
infrastructure’s soft-
ware, hardware and
configurations are
exposed to the user

p17 Resource sharing
support

tavail f32 The infrastructure pro-
vides resource sharing
capabilities to the con-
nected UEs

p18 Deployment
roaming support

tauto,
tavail

f38 The infrastructure al-
lows for multi-ISP de-
ployments, coordinat-
ing with other CNs

72

5.5 5G Properties

p19 Execution
isolation

tconf ,
tperf

f19, f37 The infrastructure can
provide an isolated ap-
plication execution en-
vironment

p20 Network isolation tconf f11, f36 The infrastructure can
provide an isolated net-
work channel

p21 Authentication
provider

tconf f31 Provides 5G-based user
authentication services

p22 Geo-fenced
deployments
support

tconf f29, f30 The infrastructure sup-
ports geo-fenced de-
ployments, limiting ac-
cess to applications and
data from within a cer-
tain geographical re-
gion

p23 UE-based
authentication
support

tauto,
tconf

f31 The infrastructure
supports UE-based
authentication for its
applications deploy-
ments

p24 CN policy based
deployment
automation

tauto f18 The deployment of ap-
plications in the infras-
tructure is automated
following the CN poli-
cies

p25 Context-based
deployment
policies

tauto f28 The infrastructure sup-
ports context-based de-
ployment policies, en-
abling advanced NFPs
based SLO definitions

73

Chapter 5 Assurance of Telco Edge Networks

5.6 Assurance in satellite and IoT networks

Satellite edge networks present peculiarities that must be considered when
utilized for edge computing. One such peculiarity is latency, which grows
when data is transmitted over great distances, as in the case of satellite net-
works. This circumstance significantly delays communication between satel-
lites and ground stations, and impacts the performance of any application
that employs this network. This circumstance significantly delays communi-
cation between satellites and ground stations, and impacts the performance of
any application that employs this network. Therefore, it is vital to account for
this latency in any satellite edge network implementation. The availability of
satellites varies depending on their target altitude (Low Earth Orbit (LEO),
Medium Earth Orbit (MEO) and Geostationary Earth Orbit (GEO)), caus-
ing changes in their relative position with respect to a point on the Earth’s
surface over time, leading to sporadic direct-connection availability. Further-
more, the computing capacity of satellites is limited by the energy stored on
board, typically produced by solar panels and contained in batteries. Heat is
also a significant limitation due to the reduced dissipation in space, which is
influenced by how much of the satellite surface is not exposed to the sun.

In this context, it is crucial to take into account the particularities and vari-
ations over time, while ensuring non-functional properties. We can accom-
plish this by enhancing the monitoring capabilities of deployment targets by
extending the host and service metrics APIs and implementing more compre-
hensive metrics on their status. This would result in a more precise and spe-
cialised examination of process usage, including estimation of power consump-
tion and execution patterns, such as expected load variations. The expanded
metrics provide more comprehensive data that can then be used to build
predictive models (for example, to estimate a more sophisticated resource
allocation for a particular service deployment). A further process involves
setting up an assurance service to collect data from the metrics APIs. These
evaluations enable the acquisition of assurance evaluations and potential fore-
casts regarding the status of the host and services. A set of predesignated
checks can be made available as templates for usual circumstances.

The expected results of this research effort are twofold: i) integration of a
more precise and detailed monitoring solution for services deployed at the
edge can enhance the quality of service in the satellite continuum’s deploy-
ment strategy; ii) the project aims to develop an assurance-focused service for

74

5.6 Assurance in satellite and IoT networks

centralised monitoring and verifiable assurance verification on the satellite.

Similarly to satellite nodes, IoT devices have limited computing and availabil-
ity capabilities. They are typically battery-powered units that periodically
awaken from a deep sleep state to perform calculations, which makes them
intermittently available. Depending on the network type and protocols em-
ployed, security issues can arise in IoT networks when unsecured channels are
utilised. In addition, the common occurrence of lack of security patches from
their vendors can lead to a compromised node in the network. To improve the
quality and security of IoT networks, it is recommended that assurance and
certification methodologies be implemented. This will enable users and CSPs
to transparently verify and certify device and service behaviour. Through this
approach, automatic checks can detect security inconsistencies and abnormal
behaviour. The verification process for the IoT platform should be compre-
hensive and conducted by a trusted third-party Accredited Lab (AL). This
establishes that the devices and services offered by the CSP are free from
any erroneous or malicious behaviour, thus mitigating risks to consumers.
The manufacturer of the device and the CSP may provide the user with a
certificate of compliance, which is periodically re-verified by an AL.

75

Chapter 6

Assurance for CDN
networks

A CDN is a network service that caches contents on servers that are closer to
the end users, reducing the latency and bandwidth consumption of delivering
the content from the origin server. A CDN also provides other benefits, such
as improving availability and scalability of the content.

A CDN service usually includes the following elements:

• a collection of servers disseminated throughout various geographical
zones, referred to as Points of presence (PoPs), which hold duplicates
of the content.

• the service utilizes a mechanism to direct user requests ti the most
suitable PoP based on factors such as server performance, network
conditions and the distance.

• a mechanism to synchronize and update the content across the PoPs,
ensuring eventual consistency and freshness.

• a mechanism is needed to optimize content delivery, which may include
compressing, encrypting, or transforming the content to suit the user’s
device or preferences (e.g. transcoding of videos to different quality

77

Chapter 6 Assurance for CDN networks

levels and formats).

• a mechanism to monitor and analyse the traffic, performance and usage
of the CDN service is essential for providing insights and feedback for
improvement.

CDNs are typically integrated into the application-level networking layer,
such as via HTTP proxies. However, they can also operate in lower lower
layers, embedded within the transport layer, offering transparent caching of
shared network data.

In this chapter, our assurance methodology is applied to verify properties of
content delivery networks (CDNs) with the aim of certifying their operational
status. This provides guarantees to both the service provider and users.

6.1 Information Centric Networks

ICN is a network paradigm that addresses contents in the network using
unique URI-like names. It is becoming more popular as a replacement for
the conventional Transmission Control Protocol (TCP)/IP network stack,
particularly when in-protocol content distribution and privacy features are
crucial [31–36]. The transition from the traditional host-centric paradigm of
the TCP/IP stack eradicates the necessity for uniquely identifying the net-
work nodes involved in the communication through network addresses, while
combining the network, transport, and application layers into a unified hy-
brid layer. Furthermore, ICN networks are also agnostic over the transmission
medium, enabling deployment on various physical network layers, including
Ethernet, WiFi, Bluetooth, or other network protocols. The primary ben-
efit of ICN-based networks is their in-protocol distributed caching system.
In contrast, media sharing solutions based on TCP/IP are not scalable and
depend on CDNs to meet the needs of numerous clients. ICN networks per-
mit each node to cache content. As a result, multiple client requests can
be immediately satisfied by closer nodes and the network’s overall load is
reduced.

In recent years, significant progress has been made in the research and de-
velopment of high-quality, high-performance, and functionally resilient ICN

78

6.1 Information Centric Networks

networks [36, 37]. Furthermore, there has been extensive research into the
security of ICN, particularly in regards to specific attacks [38, 39] and coun-
termeasures [40–43]. Monitoring solutions have been proposed to deepen the
observation of network the network status. These solutions consist of soft-
ware and hardware tools [44–48] that measures the conditions of nodes and
their communication links (e.g., load, traffic utilisation, exposed services and
uptime). Multiple protocols have been implemented for network monitoring,
such as SNMP and Internet Control Message Protocol (ICMP), to facilitate
the detection and configuration of network nodes and aggregation of moni-
toring measurements.

Relying solely on monitoring may not always be adequate in evaluating the
security level of a network. Hence, the adoption of security assurance has
become prevalent in enhancing the safety of a target system with the guar-
antee that it functions as intended despite possible failures and attacks. In
this context, certification emerges as a favoured assurance technique, collect-
ing evidence to demonstrate a precise property of a system. The gathered
evidence undergoes assessment by an AL that awards a certificate to the
system proving a specific (set of) property. Certification schemes have been
applied beyond traditional software (Common Criteria [49]) and targeted web
and cloud services [50–53] and, more recently, complex service compositions,
where the collected evidence is based on monitoring, testing, or formal proofs.
The peculiarities of recent certification schemes [50,51], being dynamic, con-
tinuous, lightweight, make them an opportunity even for verifying properties
of complex network protocols. However, to the best of our knowledge, security
assurance and certification of ICN are still in their infancy. Transparency and
trustworthiness of information-centric networks become then a major hurdle
against their widespread adoption and can open the door to persistent threats
that affect the network behaviour to its foundation. In addition, weaknesses
to poisoning attacks and system malfunctioning can impair the entire network
operation [44,47,54].

This work applies the methodology described in Chapter 3 extending our
network-level certification approach in [55] and its contribution is threefold.
It first provides an enhanced assurance model capturing the evolution of
the system over time (Section 6.3.1), and new services providing certifica-
tion functionalities (Section 6.4), which are fully integrated with the original
protocols reducing the performance impact on the overall network. It then
defines two deployment models (Section 6.5 and Section 6.6), centralized and
decentralized, which fully integrate with ICNs improving their trustworthi-

79

Chapter 6 Assurance for CDN networks

ness. It finally provides a discussion on application scenarios of interest for
ISPs or cloud providers offering certified services (Section 6.7).

6.2 NDN-based CDN

NDN is the leading implementation of ICN and supports multiple platforms
(e.g. Linux, Windows, MacOS, Android, Arduino, etc.) and physical layers
(e.g. Ethernet, WiFi, Bluetooth, etc.), soon becoming the major target of
research in ICN. In NDN, any server-produced content must to be signed
with a valid signing certificate. This enables any receiver to easily and trans-
parently verify authenticity of the data. This feature facilitates in-protocol
caching, as data can be cached in untrusted network nodes without losing its
validity. The NDN framework also implements the concept of content fresh-
ness, permitting the content producer to specify the duration for which an
item remains useful.

The of these features allows NDN to offer users with an in-protocol caching
solution where each router in the network can function as a cache node and
distribute the accumulated data to other clients. This method proves partic-
ularly advantageous in contrast to extensive CDNs as it negates the neces-
sity for tailor-made setup and remains inconspicuous to users. Furthermore,
although CDNs are typically situated in large regional data centres, NDN
caches can be situated closer to users, thereby decreasing network usage and
enhancing latency.

6.3 Assurance Methodology and System
Model

Although NDN’s distribution system is inherently secure from impersonation
and content manipulation, possible attackers can still affect its caching mech-
anism through cache poisoning and cache pollution attacks [6,40,41,55], lead-
ing to Denial Of Service (DOS) and reduced availability and performance. In
this context, continuous assurance and certification of ICN networks aid in

80

6.3 Assurance Methodology and System Model

verifying the correct operation of the system, identifying potential misbe-
haviour and the guaranteeing advanced NFPs to the network’s users.

ICN Network

ICN Router

ICN Consumer

ICN Producer

Certification
Implementation

Measurement
Collection
Process

Certificate
Release

Certification
Process

Certification
Client
Target
Node

Accredited
Lab

Policy
Verification

Process

Roles

Figure 6.1: A layer-based view of our System model.

Our system model is a standard ICN network extended with the certification
methodology presented in this work. In ICN, content consumers (ICN Con-
sumer) request contents by sending interest packets to neighbour nodes only
including the content name and optional request configuration parameters.
Content producers (ICN producer) register a series of prefixes for which they
can respond with data packets, containing the content itself and a signature
that guarantees the integrity and non-repudiability of the data. Data packets
shared through the network can be cached by any nodes in the packet path:
each router (ICN Router) that receives an interest packet first checks for a
matching data packet in its Content Store (CS) and alternatively forwards the
request to its neighbours. Figure 6.1 graphically shows our complete system
model as a traditional ICN network extended with the certification method-
ology in Figure 6.2. Any nodes in the ICN network can play any role in our
certification methodology as follows: i) the Certification Client asking for a
certification process execution, ii) the Accredited Lab (AL), responsible for the
entire certification process, and iii) the Target Node, as the target of the certi-
fication process. The Certification Process orchestrates two sub-processes to
release and distribute certificates: the Measurements Collection Process and
the Contract Verification Process. The certification client queries the AL to
execute a certification process on a set of target nodes to prove a given NFP.

81

Chapter 6 Assurance for CDN networks

The target nodes are empowered with our Measurements Collection Process
that produces metrics to be evaluated by the Contract Verification Process.
The Contract Verification Process generates evidence based on metrics to
support the award of the certificates that are attached to the target nodes
and retrieved by the certification clients.

evaluates

models

targets

executes

Accredited Lab

queries

Target Node

Metricsused by

attached to

refers to

Certificate

queries

requestsrequires verification of

Certification
Client

generates

Policy
Verification

Process

produces

Certification
Process

verified by

Non-Functional
Property

supports

Evidence collects

Measurement
Collection
Process

triggers

instrumentsCertification
Authority

Figure 6.2: Certification methodology. Dashed lines refer to certification
roles, dotted lines refer to certification process, and black lines
refer to components of the certification methodology.

More in detail, the certification roles have the following responsibilities.

• Accredited Lab (AL) is a (set of) network node orchestrating the en-
tire certification process and implementing the Contract Verification
Service. It is responsible for the verification of contracts, and the pro-
duction of certificates assessing the collected evidence. ALs listens
for certification requests from certification clients. For each valid cer-
tification request the AL starts a certification process as described in
Sections 6.5 and 6.6, and once terminated returns a list of the produced
certificates names, each of which is associated with one of the target

82

6.3 Assurance Methodology and System Model

nodes. Depending on the network and configuration scale, ALs has a
different view on the status of the whole network; an in depth analysis
of the possible solutions is presented in Sections 6.5.1 and 6.6.1.

• Certification Client is a network client having interest in the certifica-
tion process. Any devices in the network, including those that are not
acting as routers, can request a certification to one or multiple ALs to
verify properties over a set of target nodes. The obtained information
helps the client in its internal processes by identifying nodes suitable
for the deployment of a service, suggesting a more efficient or secure
routing path, improving privacy by excluding untrusted nodes, to name
but a few.

• Target node is a network node whose status can be measured by ALs
and can be targeted by certification requests from certification clients.
It runs the Measurements Collection Service that measures its internal
state and exposes it to trusted ALs1.

The three roles are independent from each other and a ICN node can play
multiple roles; for instance, a certification client can request a certification
to an AL for its own status or be an AL itself. A node can act as an AL for
its own status (self-certification), although the produced certificates cannot
be considered reliable from other clients. This decoupling property is partic-
ularly interesting in the case of a totally decentralized certification model as
we discuss in Section 6.6.1.

Our certification methodology is built on three main building blocks, an
abstract certification model (Section 6.3.1), the certification services (Sec-
tion 6.4), the certification process (Sections 6.5 and 6.6), which completes
our system model. In the following, we consider NDN, the most common and
studied ICN protocol, as the reference protocol.

6.3.1 Abstract Certification Model

Similarly to what happens for complex service-based systems, an abstract
certification model is defined to cope with the network complexity, where
each network implementation differs from the others and needs a specific

1Encryption can be adopted to preserve confidentiality over the shared measurements.

83

Chapter 6 Assurance for CDN networks

certification process. The certification model discussed in this chapter is an
implementation of the more generic model presented in Chapter 3. The main
differences are i) monitoring endpoints are implemented using the NDN pro-
tocol, allowing data to be cached in the network; ii) we adopt a more practical
approach to contracts using a simple specification language described here in
Backus-Naur Form (BNF)-notation. Figure 6.3 shows the certification model

produce

Metrics

Evidence

constraint

refers to Rules composed
by Policy

satisfies

Non-Functional
Property

refers to

contains supportsCertificate

Figure 6.3: Abstract certification model.

at the basis of our certification process, where: i) Certificate is the result of a
Contract verification aimed to prove a behaviour supporting a given NFP to
be certified; ii) each Contract is composed of set of Rules that are expressed
in our specification language and are based on Metrics captured on the sys-
tem under certification; iii) each metric produces the Evidence stored in the
certificate to support the given NFP.

6.3.2 Metrics

A metric, as retrieved by the Measurement Collection Process, is a func-
tion defined i) on a single node focused on measuring its attributes (e.g., the
amount of available memory), or ii) on multiple nodes to measure their in-
teraction (e.g., minimum network bandwidth between any points). A metric
function should be compliant with key requirements that influence its accu-
racy and correctness:

• each metric must focus on a singular aspect of the system, preventing
unnecessary duplication;

84

6.3 Assurance Methodology and System Model

• the computational effort necessary must be negligible, compared to the
descriptive value of the output;

• metrics must be calculated in parallel, minimizing the total waiting
time;

• metrics must show the temporal evolution of the system;

• metrics must not interfere with the system processes, including the
network protocol;

• metrics should be as much as possible scenario and user independent.

Given the fact that the measurements used to compute metrics spans over
a time frame, metrics are often significantly affected by the interval of time
considered during their evaluation. For instance, a metric that calculates the
average load in a network node in a large time span may hide significant
spikes that a stricter evaluation could identify. Given a specific input time
interval, a metric function produces a measurement of a specific aspect of the
system for that time interval. Formally, we define a metric as follows.

Definition 6.3.1. Given N the set of all network nodes, T a space of time
intervals and V the space of possible values that a metric can assume, metrics
M can be defined as:

M : N ˆ T Ñ V

We note that a metric m P M can be evaluated for any sets of nodes n Ď N in
an interval of time T P T, denoted as m(n,T). Each metric may evaluate the
target nodes’ state in several time points inside the chosen interval, depend-
ing on its implementation. We also note that metric values V are bounded
to specific data types and values ensuring a finite and concrete representa-
tion. Metrics evaluated on a target system produce a simplified vision of
its internal state, hiding unnecessary complexity while extracting significant
information.

We note that, evaluating the metric against a chosen subset of nodes in N
in a given instant of time we can map each node to a partial order. This
approach helps in efficiently exploring network nodes during the evaluation
of a set of contracts by defining appropriate heuristics.

85

Chapter 6 Assurance for CDN networks

6.3.3 Rules

Rules are Boolean functions based on one or more metrics and an interval of
time. We formally define a rule as follows.

Definition 6.3.2. Given N the set of all network nodes, T a space of time
intervals, and B = ttrue, falseu, rules R is defined as:

R : N ˆ T Ñ B

Each rule is a Boolean expression grounded on the simplified BNF described
in Figure 6.4.

D_V alue ::= xconstanty | xmetric evaluationy

D_Acc ::= xD_V aluey[xconstanty] |

xD_V aluey[xconstanty : xconstanty]

D_Expr ::= xD_V aluey | xD_Accy |

xD_ExpryxD_OpyxD_Expry |

xD_Transfy(xD_V aluey)
D_Op ::= + | ´ | ˆ | /

D_Transf ::=
ÿ

|
ź

|min |max | abs | len | . . .

D_Cmp_Op ::= ă | ď | = | = | ě | ą

B_V alue ::= true | false | xrule evaluationy |

xD_ExpryxD_Cmp_OpyxD_Expry

B_Op ::= ^ | _ | ” | ‘

B_Expr ::= xB_V aluey | !(xB_Expry) |

xB_ExpryxB_OpyxB_Expry

Rule ::= xrule namey(t1, t2) = xB_Expry

Figure 6.4: Rules expressed in a BNF notation. For the sake of simplicity, we
will skip some trivial non-terminals.

In this notation, xconstanty is a value in V, xmetric evaluationy is in the
form mi(T1,n1), and xrule namey is an unique rule identifier in the form

86

6.3 Assurance Methodology and System Model

ri(T1,n1). Following the abstraction notation, T,T1 P T and n,n1 P N. Since
several rules can share parts of definition, we included xrule evaluationy in
the BNF, allowing a rule evaluation to be called from within another rule,
even on a different time interval. Metric and rule evaluation can only be
applied within the time interval and nodes of the original rule, such that
T1 Ď T and n1 Ď n, forbidding recursively defined rules over shifting time
intervals.

For each rule a partial order (R,ĺr) that indicates the strictness of the rule
is defined as follows.

ra ĺr rb ðñ @ n P N,T P T
rb(n,T) ñ ra(n,T)

Example 6.3.1. Consider the two rules ri(n,T) = m(n,T) ď 10 and rj(n,T) =
m(n,T) ď 5 where m indicates the maximum RTT in ms allowed between
the nodes in n in the time interval T. We can see how rj is stricter than ri,
since all nodes in which rj is valid will also be valid for ri while the opposite
is not true, therefore ri ĺr rj .

6.3.4 Contract

A contract describes the expected behaviour of a group of nodes by indicating
a set of rules that should be positively evaluated. We define a contract as a
subset in the powerset of the space of all possible rules. More formally we
define the set of all contracts as

P = ℘(R)

Notice that we use P with the assumption that for each property exists one
and only one contract that verifies it. In case of several version of contracts
for the same property, we may annotate p with and identifier. Contract are
evaluated by combining the output of each of their rules: a contract is verified
for a given set of nodes n P N in an interval of time T P T if and only if all of its
rules evaluated in n and T produce a positive output. We note that a contract
including pairs of conflicting rules, for instance tm(T,n) = 1,m(T,n) = 2u,
produces a negative output. By contrast, the contract corresponding to the
empty set of rules produces a positive output by default, regardless of which
set of nodes and time intervals are given as input.

87

Chapter 6 Assurance for CDN networks

Due to the inherent compositional nature of rules in our model, we can define
a partial order (P,ĺp) as follows:

a ĺp b ðñ @ ra(na, ta) P a D rb, tb,nb

where ra ĺr rb, ta Ď tb,na Ď nb |

rb(nb, tb) P b

a ĺp b if and only if b contains at least the same or stricter rules than a
and each rule in b is evaluated on a superset of the time intervals and on a
superset of the set of nodes of its counterpart in a.

Contracts are defined as sets of rules, therefore we can combine multiple
contracts together in a single set. Exploiting the partial order (P,ĺp), we
can define a contract P as the Least Upper Bound (LUB) of several contracts,
producing the equivalent of concatenating the contract rules with the logical
and operator. This more effective than a simple union as we can shrink
multiple version of the same rules to a single stricter one.

Contracts can also be used as a selection mechanism for identifying a subset
of nodes within the network with peculiar characteristics. Given a target
contract p that we want to validate, we can verify which subsets of network
nodes in a set N verify the contract. A contract-based filter can be generated
by combination of multiple contracts using the Greatest Lower Bound (GLB)
operator such that p = glb(P), where P is the set of target contracts. This
is equivalent to concatenate the contract rules with the logical or operator.
A typical use case for such an approach is the deployment of a service over a
set of nodes all ensuring a contract such as data replication grade or channel
encryption.

6.3.5 Certificate

Certificate is the outcome of the certification process and are composed of:

• the contracts a certificate proves;

• the validation parameters, such as the target set of nodes and the time
interval;

88

6.4 Certification Services

• the evidence supporting the certificate and verified by the involved
contracts.

Definition 6.3.3. We define a certificate as a tuple xT,n,P, vy where T is
a time interval in T, n is a set of nodes in N, p is a contract that has been
verified in the interval T for all nodes in n, and v is the set of evidence related
to nodes in n evaluated during the verification of contract p.

v is optional to protect against the release of sensitive information. A certifi-
cate is awarded by a AL if and only if the contract P has been successfully
verified.

6.3.6 Non-Functional Properties

A NFP is an abstract concept that identifies the expected status of a system.
Our model treats property as a generalization of one or multiple verified con-
tracts, meaning that a group of nodes n has a property p in the interval T
if a selected set of contracts has been verified. Property is verified according
to different and non-intersecting contracts. For instance, property confiden-
tiality is verified if all contracts ensuring an encrypted network traffic are
verified. Properties that describe the same concept can have several degrees
of satisfaction depending on which of the associated contracts have been ver-
ified. In the previous example, a contract that ensures all traffic is encrypted
using an RSA key of length 2048 bits is weaker than a contract requiring a
key length of 4096 bits.

We note that different clients can define properties using different sets of
contracts, depending on their requirements and use cases.

6.4 Certification Services

The abstract certification model in Section 6.3.1 is instantiated in the certifi-
cation processes in Sections 6.5 and 6.6 using the the measurement collection
and contract verification services described in the remaining of this section.

89

Chapter 6 Assurance for CDN networks

6.4.1 Measurement Collection Service

The measurement collection service allows ALs to query the internal state of
any target nodes through their metrics. There are three different ways to im-
plement our measurement collection service: i) pull, ii) push, and iii) hybrid.
The pull solution works as follows:

1. each target node executes a service that binds to a known prefix listen-
ing for measurement requests in the form /…/xnodey/measure/xmetricy/xparamsy,
where xmetricy uniquely identifies the metric chosen by the AL, while
xparametersy indicates the metric parameters such as the interval of
time used to measure;

2. a AL can repeatedly send interest requests to a node with the necessary
fields to query its state;

3. when a target node receives a valid measurement request, it replies
with a data packet containing the result of the metric evaluation with
the given parameters;

4. data packets can be cached, supporting the efficient distribution of the
measurements to the ALs that sent a matching request;

5. the contents of the data packets can be encrypted to preserve confiden-
tiality.

This approach has the disadvantage of requiring the ALs to know the prefix
of a possibly large number of nodes, but leaves total control on the ALs over
which metrics need to be queried and when.

The push solution works as follows:

1. each AL executes a service that binds to a known prefix listening for
measurement updates request in the form /…/xnodey/update/xmeasurementsy,
where xmeasurementsy is an encoded list of measurements;

2. each target node hosts a service that periodically evaluates all metrics
using a fixed set of parameters;

90

6.4 Certification Services

3. after each iteration, the node sends the AL an update over the newly
obtained measurements.

This solution moves the responsibility of maintaining synchronization from
the AL to the nodes and reduces synchronization delays. Unfortunately, it
also increases the total amount of data sent, as even unnecessary measure-
ments can be contained in the packets. Moreover the ICN caching mechanism
cannot be used for requests, therefore the total network traffic would increase
significantly in the case of multiple ALs. While this method is possible, it
can experience efficiency and scalability issues.

The hybrid solution combines the pull and push implementations. Depending
on the amount of updated data to share and the size of the network, it can
improve the synchronization with a limited increase in traffic. It works as
follows:

1. when an update is ready a node sends a small notification request to
the ALs;

2. then, the ALs can request the status of the node as in the pull solution.

This addition helps in synchronizing the two parties, reducing the idle time
from when the information is ready and when it is collected by the ALs,
while maintaining the advantages of ICN caching mechanism. However, it also
introduces complexity and additional traffic compared to the push solution.

Our model implements the pull solution and supports the hybrid one, pro-
viding the best tradeoff in complexity and network usage. Each node in the
network exposes a predefined prefix in the form /…/xnodey/measure/list,
which returns the list of available metrics and a prefix in the form
/…/xnodey/measure/xmetricy/[to]/[from] allowing other nodes to query
its metrics. Depending on the type of metric, the two parameters to and
from can be optional.

6.4.2 Contract Verification Service

Contract Verification Service formalizes how clients can request verifications
to ALs and the certification response. The implementation of such service

91

Chapter 6 Assurance for CDN networks

with the pull approach can be summarized as follows:

1. each AL executes a service that binds to a known prefix listening for cer-
tification requests in the form /…/xnodey/verify/xparametersy, where
xparametersy indicates the verification parameters, including which
contract, time interval, and nodes subset to use in the evaluation;

2. for each valid certification request, the AL service executes a certifica-
tion process, as described in Sections 6.5 and 6.6, which produces a list
of content names, each pointing to a certificate;

3. once the certification process is terminated, the service responds to
the client request with the list of certificates produced in the form of
content names.

These responses can be cached, allowing other clients with matching requests
to be immediately satisfied.

6.5 Centralized Certification Process

We instantiate the abstract certification model in Section 6.3.1 using the
certification services in Section 6.4 and the centralized certification process
in Figure 6.5a, where the AL mediates all certification activities.

AL

CNTN

TN

TN

CN
CN

CN

CN

CN

CL

CL

CL

CL
CL

CL

CL

CL

CL

CL
CL

(a) Centralized certification process.

CN

ALTN

TN

TN

AL
CN

CN

AL

CN

CL

CL

CL

CL
CL

CL
CL

CL

CL

CL
CL

(b) Decentralized certification process.

Figure 6.5: Abstract certification model instantiation. Clients (CL) request a
contract verification on a set of target nodes (TNs) to Accredited
Lab (AL).

92

6.5 Centralized Certification Process

6.5.1 Network Model

Figure 6.5a presents a centralized network model at the basis of a centralized
certification process, where a single AL is responsible for all certification
activities and any nodes can be both certification client and target. While this
approach introduces a single point of failure on the AL, which also becomes a
significant bottleneck in larger networks, it introduces some major advantages
as follows.

• Service discovery. The AL knows the prefixes exposed by the target
nodes to query their metrics. With a centralized network a common
approach to service discoverability is to use a registration approach so
that i) the AL prefix is known to any nodes in the network and ii) each
node that connects to the network notifies its prefix to the AL through
a registration request. This solution is simple to implement and does
not rely on protocol-specific service discovery features.

• Simpler certificate distribution. The AL distributes the certificates it
produces as contents of a self-owned predefined prefix. The nodes that
are awarded with a certificate are notified by the AL. This solution
allows any clients in the network to query for a certificate knowing
only the AL’s base prefix, while exploiting the caching capabilities of
the network for an efficient distribution of common data requested by
multiple clients.

• Results caching. The AL is the only actor receiving certification re-
quests and producing corresponding certificates. Caching of previously
verified contracts is effective, reducing the number of network requests
necessary to evaluate new requests.

6.5.2 Certification Process

Algorithm 1 presents the centralized certification process and corresponding
contract verification, where a is a certification client, c a AL, n a subset of
nodes, and T a time interval. Figure 6.6 visually represents the steps of the
algorithm in an example network.

93

Chapter 6 Assurance for CDN networks

A contract verification request sent by a certification client (line 22) is han-
dled by a AL. The certification process starts by checking whether the locally
cached certificates already verify the target contract; an initially empty con-
tract is expanded by applying the GLB operator (line 2–6). If the target
contract is smaller in ĺp than the obtained set, the target contract is veri-
fied and the list of cached certificates returned as output (lines 7–8). If the
cached certificates are insufficient, the certification process proceeds by eval-
uating each rule that is not verified yet (lines 9–13). The certification process
finally checks if all the rules have been verified; if yes, it generates and returns
a certificate to the client, otherwise, it returns an empty list (lines 14–19).
Finally, the client receives the list of certificates (line 23).

Algorithm 1 Centralized certification process.
1: function handle request(contract: p(n,T))
2: vres = H

3: for all vcached P cached_certificates() do
4: for all rule r(n,T) P p(n,T) do
5: if r(n,T) ĺp vcached then
6: vres = GLB(vres, vcached)
7: if p(n,T) ĺp vres then
8: return vres
9: for all rule r(n,T) P p(n,T) do

10: if r(n,T) łp vres then
11: for all metric evaluation m(b1,T1) P r(n,T) do
12: m_res[m] = m(b1,T1)

13: p_valid =
Ź

r(n,T)Pp(n,T)
r(n,T)

14: if p_valid then
15: cert = new_certificate(p(n,T))
16: vres = tcertu

17: else
18: vres = H

19: return vres
20:
21: function request verification(contract : p(n,T))
22: res = send_request(contract)
23: certs = collect_certs(res)

94

6.6 Decentralized Certification Process

TN

6. Certificate coll. res.

2. Measure req.

3. Measure res.

5. Certificate coll. req.

4. Verification res.

1. Verification req.

Certification Client Accredited Lab Target Node

ALCL

Figure 6.6: Centralized certification process: Communication flow.

6.6 Decentralized Certification Process

We the abstract certification model in Section 6.3.1 using the certification ser-
vices in Section 6.4 and the decentralized certification process in Figure 6.5b,
where multiple CAs manage the certification activities and their output can
be independently combined.

6.6.1 Network Model

Figure 6.5b presents a decentralized network model at the basis of a decen-
tralized certification process, where a every node in the network can act as a
AL making the certification process completely decentralized. This approach
eliminates the single point of failure of the centralized network model and
allows clients to request certifications to several nodes in the network. It
also enables clients to selectively specify the AL node on the basis of its trust
level, possibly requiring the AL to filter out those certificates produced by un-
trusted sources. The decentralized approach provides additional advantages
as follows.

• Service discovery. The distributed network model extends the previ-
ous one by including an automatic service discovery mechanism, which
allows each node to search for ALs nodes in their proximity. As dis-
cussed in Section 6.4, ALs, as well as all nodes in the network, exposes

95

Chapter 6 Assurance for CDN networks

services on predefined prefixes. Depending on the capabilities of the
underlying ICN protocol, the clients can either use in-protocol ser-
vice discovery features to identify nodes with such prefixes, like Named
Data Link State Routing (NLSR) in NDN, or send discovery requests to
each network interface in a multicast fashion with an increasing maxi-
mum hops limit. This approach allows clients to operate independently
from a central authority and to self-organize in spatially localized sub-
networks.

• Decentralized certificate distribution. The tasks of storing and dis-
tributing the awarded certificates are outsourced from the AL to the
target nodes. A AL that successfully certified a node sends a registra-
tion request submitting the signed certificate as a parameter of a prede-
fined prefix of the target node in the form /…/xnodey/register/xcertificatey.
A node that receives such a request stores the certificate in a local
storage using a unique identifier, exposes the certificate as a content
on a predefined prefix in the form /…/xnodey/certificate/xidy, and
responds to the registration request with the complete content name.
The AL can then collect the list of certificate names, one for each target
node, and answer to its certification client. The target nodes also ex-
pose their list of awarded certificates including the contract and param-
eters used on a predefined prefix in the form /…/xnodey/certificates/[filter],
allowing ALs to easily query their storage for previous certificates that
can used as a baseline for further verification. The certificates distri-
bution is then decoupled from the ALs that produced them and rather
controlled by the target nodes, while maintaining the effectiveness of
the caching capabilities of ICN. The decentralized approach increases
the total number of requests necessary to produce a certificate in small
networks but strongly reduces traffic originated by packets being for-
warded in large networks, with respect to what expected in the central-
ized solution. In other words, it prevents long paths from the periphery
of the network to the central AL and vice versa.

• Result caching. Caching of previous results is more effective than the
one in the centralized model. Each AL can store the certificates pro-
duced by itself and query others ALs’s certificates directly to the target
nodes. This approach enables a distributed and cooperative certifi-
cation service, where each verification can exploit previously verified
contracts to produce new knowledge.

96

6.6 Decentralized Certification Process

• Contract query service. The contract verification process in our dis-
tributed network model employs an additional network service to allow
ALs to query target nodes for stored certificates matching a minimum
contract. These targets listen for query requests on a predefined pre-
fix in the form /…/xnodey/certificates/xfiltery, where filter is an
encoded contract definition. When a request is received the node iter-
ates over its certificates, checks which ones pass the filter, collects their
content name in a list and returns it to the requester. This solution
allows ALs to rapidly collect information about previously verified con-
tracts over their target nodes without requiring a network-wide level
of synchronization over the status of certificates.

6.6.2 Certification Process

Algorithm 2 presents the decentralized certification process and correspond-
ing contract verification, where a is a certification client, c a AL, n a subset
of nodes, and T a time interval.

A contract verification request sent by a certification client (line 32) is han-
dled by a AL. The certification process starts by checking whether the locally
cached certificates already verify the target contract: an initially empty con-
tract is expanded by applying the GLB operator (line 2–6). If the target
contract is smaller in ĺp than the obtained set, the target contract is veri-
fied and the list of cached certificates returned as output (lines 7–8). If the
cached certificates are insufficient, the certification process queries the neigh-
bour nodes for certificates that satisfy the inner rule evaluations and merges
them to the previous partial solution (lines 9–13). If the obtained solution is
sufficient, it returns the list of certificates (lines 14–15); otherwise, the cer-
tification process proceeds by evaluating each inner rule that is not verified
yet (lines 16–21). The certification process then checks if all the inner rule
evaluations have been verified; if yes, it generates and returns a certificate to
the client, otherwise, it returns an empty list (lines 22–29). Finally, the client
receives the list of certificates (line 33).

The evaluation of certificates stored locally or on neighbour nodes (lines 9–13)
could be insufficient to verify the target property. This means that at least one
among the set of rules, the set of nodes, or the time interval causes a failure in
the evaluation. Automatic and timely identification of the cause of the failure

97

Chapter 6 Assurance for CDN networks

Algorithm 2 Decentralized certification process.
1: function handle request(contract: p(n,T))
2: vres = H

3: for all vcached P cached_certificates() do
4: for all rule r(n,T) P p(n,T) do
5: if r(n,T) ĺp vcached then
6: vres = GLB(vres, vcached)
7: if p(n,T) ĺp vres then
8: return vres
9: for all rule r(n,T) P p(n,T) do

10: cert_names = query_certs(r(n,T))
11: certs = collect_certs(cert_names)
12: for all vcached P certs do
13: vres = GLB(vres, vcached)
14: if p(n,T) ĺp vres then
15: return vres
16: for all rule r(n,T) P p(n,T) do
17: if r(n,T) łp vres then
18: for all rule r P p1 do
19: for all metric evaluation m(b1,T1) P r(n,T) do
20: m_res[m] = m(b1,T1)

21: p_valid =
Ź

r(n,T)Pp(n,T)
r(n,T)

22: if p_valid then
23: cert = new_certificate(p(n,T))
24: vres = tcertu

25: for all b P n do
26: notify_new_certificate(b, cert)
27: else
28: vres = H

29: return vres
30:
31: function request verification(contract : p(n,T))
32: res = send_request(contract)
33: certs = collect_certs(res)

98

6.6 Decentralized Certification Process

1. Verification req.

2. Certificate query req.

3. Certificate query res.

4. Certificate coll. req.

5. Certificate coll. res.

6. Measure req.

7. Measure res.

12. Certificate coll. res.

11. Certificate coll. req.

10. Verification res.

8. Certificate notification req.

9. Certificate notification res.

Certification Client Accredited Lab Certifiable Node Target Node

CL AL TNCN

Figure 6.7: Decentralized certification process: Communication Flow.

permits to rapidly identify which inner rule evaluations are missing to meet
the contract requirements and, in turn, ask them to other nodes or manually
verify them. We present two examples where the evaluation of certificates
stored locally or on neighbour nodes prevent the AL to re-evaluate already
verified contracts or to reuse partial results.

Example 6.6.1. Consider the case of a contract that checks whether a rule
r is valid for the interval T for the nodes n. The AL queries the nodes in n
and retrieves a certificate that validates r for all nodes in n1 where n Ď n1 for
the interval T1 with t Ď t1. It follows that, if AL trusts the certificate results,
the rule r has already been verified and thus also the contract.

Example 6.6.2. Consider the case of a contract that checks a rule r is valid
for the interval T = xt1, t2y for the nodes n. The AL queries the nodes in n
and retrieves a certificate that validates r for all nodes in n for the interval
T1 = xt11, t

1
2y with t11 P [t1, t2]. It follows that, if AL trusts the certificate

results, it needs to verify r only for the interval [t11, t2]. A similar scenario
considers a rule already verified on a subset of the nodes; in this case the AL
could trust the certificate and verify only the unchecked nodes.

99

Chapter 6 Assurance for CDN networks

We note that the decentralized certification process proposes a collaborative
approach designed to exploit the caching capabilities of Information-Centric
Networks and improve the overall system performance. The decentralized
approach outperforms the performance of the standard centralized process
based on a AL managing the entire certification activities, also improving its
security and addressing the problem of a single point of failure. The central-
ized approach has the main benefit of being inline with current certification
frameworks.

6.7 Discussion

While current literature has already demonstrated the effectiveness of ICN
networks in large and complex scenarios, it does not include any unified so-
lutions for monitoring and certification of such networks. In this work we
presented a certification methodology for such networks, capable of efficiently
verifying complex contracts to ensure the expected levels of QoS. We defined
an abstract certification model that can be easily adapted for a large variety
of applications, from Service Level Agreements monitoring to attack detec-
tion systems. We believe this work is an important step in the evolution and
diffusion of ICN based services in the field of edge and cloud computing, as
a more efficient and trustworthy solution. The certification methodology in
this work is fully compatible with ICN and does not require changes at pro-
tocol level. It can also substantially improve ICN functionalities in different
scenarios that are summarized in the following of this section.

6.7.1 Network Adaptation

Modern networks have strong flexibility requirements, especially in mobile
contexts, with devices entering and exiting the network, or even moving inside
it, large spikes of traffic, and an ever increasing variety of network services.
Effective adaptation is a hard problem, especially in large scale networks
like national ISP networks, where the number of connected devices easily
exceeds millions. The decentralized certification process in Section 6.6 allows
clusters of devices to self-regulate based on inferred network properties, while
maintaining high levels of trust and privacy.

100

6.7 Discussion

As an example, let us consider a scenario in which the network is capable
of detecting a malfunctioning or compromised node, requiring that all the
traffic is routed to an alternative path. This approach is viable for large
monitored network nodes, like ISPs, cloud centres, and large firms ingress
points, where teams of experts are available and the computational power
is not a limiting factor. On the other hand, small scale networks, like of-
fices, districts switches, hospitals, and small companies likely cannot afford
a dedicated team. A network adaptation solution based on our distributed
certification process permits the definition of automatic security measures to
respond to the emergency, while requiring far less resources and expertise.

6.7.2 Secure Service Deployment

The deployment of a service in a set of network of nodes (e.g., in a public
cloud, a multi-tenant environment, a cluster of servers) raises security con-
cerns. Which properties can the host guarantee? What level of security can
we expect from the nodes? Would the nodes have the necessary resources to
run the service?

A certification process permits to verify contracts and identify whether a
certain set of nodes is suitable for the deployment of the chosen services. Our
certification process can both evaluate if a given set of nodes is suitable for
the deployment of the chosen services and filter from an arbitrary large set of
nodes the most suitable ones. This can be achieved by first using a contract-
based filtering over the whole network and then a metric-based ordering on
the remaining nodes. We note that this approach can be integrated in service
deployment schedulers, to improve their effectiveness and enforcing resource
or security constraints.

6.7.3 Attack Detection

Our certification process can be used to continuously monitor a target net-
work with the goal of identifying misbehaviour instead of certifying specific
NFPs. This can be easily obtained with ad hoc contracts focused on anomaly
detection. An example of contract that can be used for anomaly detection
contracts is the one focused on detection of cache pollution attacks, a DOS

101

Chapter 6 Assurance for CDN networks

technique used to incapacitate the cache of an ICN network nodes by forcing
them to store useless or unpopular data. Rules that analyse the network
traffic statistics can rapidly identify changes in the type of contents stored
across the network and alert of a possible attack event.

102

Chapter 7

Assurance in Big Data
Analysis Platforms

We live and operate in a data-driven ecosystem where huge amounts of data
are collected, shared, and analysed by multiple actors working within and
across organizational boundaries. The benefits brought by this data-driven
ecosystem in terms of value, performance, and quality, come at the price of
increasing security and privacy risks. Data, in fact, can be sensitive and
need to be protected and secured once stored and while processed, following
strict regulations such as the General Data Privacy Regulation (GDPR) in
Europe.

A number of different solutions protect the Big Data infrastructures and their
data/processes by internal and external threats and attacks, resulting in the
proliferation of ad hoc solutions that prove a specific property or compliance
to a specific regulation [56–58]. Each solution targets a very small part of the
whole problem [59–63], missing the full picture. For example, Terzi et al. [59]
presented a survey on a global perspective of Big Data security and privacy,
while Yakoubov et al. [60] specifically focused on cryptographic approaches.
Zhang et al. [61] proposed a scalable differential privacy approach for Big
Data multidimensional anonymisation based on MapReduce. In addition,
the research community has started approaching the problem of protecting
ML algorithms and corresponding modes [64, 65] at the core of Big Data
systems, while neglecting the protection of the whole systems.

103

Chapter 7 Assurance in Big Data Analysis Platforms

The need of trust and transparency of Big Data computations is clearly rais-
ing, representing a major barrier against the adoption of Big Data tech-
nologies especially in a multi-tenant environment. Service providers (data
transformers/analysers) are reluctant to take full responsibility over security
and privacy breaches of their services. Customers (data owners/suppliers) do
not have access to all security intelligence and log information, which impairs
their ability to estimate risks. There is no evidence that their computations
and information are correctly managed and protected, as well as on the status
of service security and correct behaviour of security and privacy controls.

This chapter completely rethinks our previous work [24], where we tried to
address the above gaps but in the framework of DevOps processes applied to
Big Data pipelines. In this chapter, we depart from the development process
adopted in [24] and, to the best of our knowledge, present the first attempt
to address the general problem of Big Data pipeline assurance in an holistic
manner.

Assurance is the way to gain justifiable confidence that i) one or more security
properties are consistently demonstrated by the target of an assurance eval-
uation and ii) the target operationally behaves as expected, despite failures
and attacks [66]. Applying assurance to Big Data is a complex process that
evaluates the trustworthiness at multiple layers: iii) the Big Data pipeline
and all its tasks, iv) the Big Data engine and all services over which the
pipeline is executed. The goal of our assurance solution is to increase the
trustworthiness of Big Data applications, mitigating the typical user distrust
in Big Data environments1. This distrust is typically based on the fact that
service providers and customers lose, at least partly, control over the status of
their data and applications, and Big Data technologies and analytics provide
blazing fast inference on such data. Few approaches have already focused on
Big Data assurance, tackling specific aspects like data integrity or authenti-
cation [67–69]. Gao et al. [70] focused on Big Data quality assurance, and
just partially considered security and privacy quality metrics. Presenting a
comparison of Big Data validation tools, the chapter underlines a set of needs
including lack of well-defined quality validation and assurance standards, as
well as lack of available research results on quality models/metrics and cer-
tification programs. Some initial assurance solutions also targeted the need
of verifying NFPs of ML models to the aim of implementing trustworthy

1Ernst and Young - https://www.ey.com/en_es/assurance/how-big-data-and-
analytics-are-transforming-the-audit

104

https://www.ey.com/en_es/assurance/how-big-data-and-analytics-are-transforming-the-audit
https://www.ey.com/en_es/assurance/how-big-data-and-analytics-are-transforming-the-audit

7.1 Assurance Process and Architecture

decision systems [71].

The scientific contribution of this chapter is twofold. First, we propose a novel
assurance process and architecture that evaluates the trustworthiness of Big
Data pipelines at all layers, including the Big Data environment. Second, we
define an assurance methodology where: i) clients annotate a pipeline tem-
plate with assurance requirements modelling their trust expectations in terms
of NFPs ii) a pipeline instance is generated from the template mapping all
tasks, services, and requirements on real components, and iii) an assurance
confidence level is calculated modelling the trustworthiness level of the Big
Data pipeline. We experimentally evaluated our approach in the context of
the H2020 EVOTION Policy-Making Big Data Platform [72], where policy-
makers design or select analytics templates to be instantiated and executed
by the platform in a fully assisted and privacy-preserving way. We note that
our approach further complements the 5V definition of Big Data [73] where
veracity (i.e., messiness or trustworthiness of the data) is enriched with Big
Data assurance, where Big Data trustworthiness is complemented with the
Big Data transparency and the soundness of Big Data computations [74].

The chapter is organized as follows. Section 7.1 defines the assurance process
and the software architecture implementing and automating its evaluation.
Section 7.2 defines the abstraction over the data pipeline and the Big Data en-
vironment needed to represent the process. Section 7.3 introduces a practical
scenario where security assurance techniques are applied to a real Big Data
pipeline, describing its tasks and its ecosystem. Section 7.4 describes our as-
surance methodology. Section 11.4 shows our experimental results considering
different execution scenarios. Finally, Section 7.5 presents our remarks.

7.1 Assurance Process and Architecture

Non-functional assurance is the degree of confidence to which a system sup-
ports non-functional (e.g., security and privacy) requirements. A number of
recommendations and security benchmarks have been proposed to support as-
surance activities such as the ones by Cloud Security Alliance [58,75]. In this
chapter, we propose an assurance process (see Section 7.1.1) that measures
how much the security controls in the system contributes to a specific NFP
and the degree of confidence held by such verification. For instance, let us

105

Chapter 7 Assurance in Big Data Analysis Platforms

consider a requirement on data confidentiality both in transit and at rest for
a given target system. Let also assume that it insists on two security controls
implementing i) a mechanism for channel and storage encryption and ii) an
access control mechanism mediating data ingestion. Our process measures
the support, and corresponding degree of confidence, for property data con-
fidentiality, by verifying the configuration of the encryption algorithm (e.g.,
encryption algorithm and key length), on one side, and the configuration of
the access control system (e.g., type of access control and soundness of defined
policies), on the other side.

7.1.1 Assurance Process

Figure 7.1 shows a methodological view of our assurance process. It is driven
by a given requirement r P R and refers to a given target τ , and aims to
compute the assurance confidence level of r on τ . The assurance confidence
level is computed by our assurance process according to the outcomes of
the evaluation process, which evaluates the evidence collected on the target
system τ . Such evidence is collected by our assessment process inspecting the
target system τ with respect to the given requirement r P R.

Definition 7.1.1 (Assessment process). Given a non-functional requirement
r P R and a target τ , an assessment process ev = P (r, τ) is a process P that
collects evidence ev related to a given requirement r on τ .

An assessment process is usually based on testing, monitoring, or formal
methods [50,76,77], and produces an evidence in the form of test cases results,
monitored events, and formal proofs, respectively. For instance, let us con-
sider the encryption control for requirement confidentiality of data in transit.
An assessment process can recurrently test whether the selected encryption
algorithm follows specific standards/regulations. Service configurations can
be then verified (e.g., by parsing the configuration files) to evaluate require-
ments on the key length. We note that multiple assessment processes Pi can
be executed in relation to a single requirement r P R and, in turn, multiple
evidence evi can be collected.

We define an evaluation process to verify whether a set of collected evidence
support a given requirement r P R on a given target τ as follows.

106

7.1 Assurance Process and Architecture

Target
τ

Requirement
r P R

Assurance
Confidence Level

l

Evidence
EV = [ev1 ¨ ¨ ¨ , evn]

Assurance Process
Aτ,r

Evaluation Process
E(EV, r)

Assessment Process
[P1(r, τ), ¨ ¨ ¨ , Pk(r, τ)]

refers to

refers tocomputes

refers to

producesused for

focuses on

based on

Figure 7.1: Methodological view of our assurance process.

Definition 7.1.2 (Evaluation process). Let us consider a set of evidence
EV = tev1, . . . , evnu retrieved by a (set of) assessment processes tP1(r, τ), . . . , Pk(r, τ)u
executed on target τ for a specific requirement r. An evaluation process can
be defined as a function E(EV, r) returning a value in [0, 1] identifying the
strength of the evidence EV supporting r. E(EV, r) = 1 means that the
evidence ev P EV fully supports r; E(EV, r) = 0 means no support.

The strength of the evidence supporting the claim can differ depending on
different evaluation parameters such as the type of probe, and the number and
quality of evidence collectors, to name but a few. We consider the approach
used to compute whether a set of evidence EV supports or not a requirement
r and the relative strength, out of the scope of this work (a possible approach
can be found in [78]).We note that multiple evaluation processes Ei can be
executed on specific subsets EVi of evidence. We also note that our process
aims to distinguish between positive evaluations (ą0) at different levels of
strength. Negative evaluations, due to insufficient/disproving evidence or
lack of information, are considered at the same level. This is a conservative

107

Chapter 7 Assurance in Big Data Analysis Platforms

approach, meaning that all systems not reaching a minimum assurance level
are simply ignored.

Out assurance process can be finally defined as follows.

Definition 7.1.3 (Assurance process). An assurance process Aτ,r for a spe-
cific target τ is a process that takes as input a tuple xEV, ry, where EV is the
set of evidence and r P R a requirement, and returns as output the assurance
confidence level l P [0, 1]. It represents the level to which the collected evi-
dence EV satisfies requirement r according to a set of evaluation processes
Ei(EVi Ď EV, r) executed on the collected evidence EV (see Definition 7.1.2).

We compute the assurance confidence level as follows.

Definition 7.1.4 (Assurance confidence level). Given a set of evaluation
results Ei, the assurance confidence level l is computed as follows: l =
|Eią0|

|Ei|
¨ avg(Ei ą 0) where |Eią0|

|Ei|
is the frequency of positive evaluations

and avg(Ei ą 0) is the average value of the positive evaluations.

We note that evaluations not supporting a given requirement (i.e., Ei = 0)
contributes in the frequency factor coherently with the Definition 7.1.2, where
the degree of positive evaluations are measured.

For instance, let us assume that i) a test-based assessment of an encryption
service provides evidence satisfying the expectation on the algorithm but not
on the key length used for data encryption (which is lower than expected)
and ii) a monitoring-based assessment provides positive evidence on data
ingestion (e.g., logs show that only authorized users accessed ingested data).
Collected evidence is evaluated following Definition 7.1.2 and two evaluations
E1 = 0.5 and E2 = 1 retrieved. Confidence level is then computed according
to Definition 7.1.4 as l = 2

2 ¨ 0.5+1
2 = 1 ¨ 0.75 = 0.75 and returned by the

assurance process Aτ,r in Definition 7.1.3.

108

7.1 Assurance Process and Architecture

Assurance Manager
(Aτ, R)

Evaluation Manager
E(EV,r1)

Evaluation Manager
E(EV,r2)

Probe
Repository

Agent1

Agent2

Agent3

Target τ

[P1(r1, τ) ⋯ P3(r2, τ)]

ev1,..evn

⋮

Figure 7.2: Assurance Architecture.

7.1.2 Assurance Architecture

Figure 7.2 describes our assurance architecture implementing the assurance
process in Figure 7.1. Assurance Manager is the owner of the assurance pro-
cess. It is responsible to i) set up the evaluation processes on the given target
τ according to a specific set R of requirements and ii) collect the evaluation
process results used to compute the assurance confidence level. Evaluation
Manager manages all activities for the requirement evaluation. It is respon-
sible to i) set up the assessment process and ii) collect the evidence used to
evaluate whether a requirement r P R is supported. The assessment pro-
cess is implemented instrumenting different Assessment Probes that executes
the assessment process on τ and retrieves the corresponding evidence ev.
Probes Repository stores and maintains the probes, for instance, updating
them in case new threats or guidelines are released. The probes are exe-
cuted by Assessment Agents that are deployed and connected to the target
of the assessment. We note that the probes in the probe repository can be
configured by the assessment agents to inspect a specific target via specific
target’s hooks (e.g., APIs or the path of configuration files). They perform
testing and monitoring activities, parse configuration files, execute code, and
perform network traffic inspections (see Section 11.4).

When the assurance process verifies a set R of requirements, the following
flow of actions is triggered. Assurance Manager instruments one or more
Evaluation Managers with details on the evaluation to be executed, one for
each requirement r P R. The Evaluation Managers communicate with the
agents (deployed a priori) asking for the execution of probes addressing a
specific assessment process. The agents download the requested probes from

109

Chapter 7 Assurance in Big Data Analysis Platforms

the repository and execute them against the target returning the collected
evidence back to the corresponding Evaluation Manager. The Evaluation
Managers evaluate the collected evidence and return the evaluation results to
the Assurance Manager. Assurance Manager finally computes the assurance
confidence level.

7.2 Modelling Big Data Analytics Pipeline

We consider the Big Data analytics pipeline as the target τ of our assurance
process in Figure 7.1, detailing it as i) a set of tasks t P T implementing
the processing pipeline p and ii) a set of services s P S implementing the
ecosystem e and supporting the deployment and execution of the process-
ing pipeline. The pipeline and ecosystem are modelled at two levels of ab-
straction: i) abstract level, modelling the generic purposes of a task t and
the abstract functionalities offered by a service s (template abstraction) and
ii) concrete level, defining specific task implementations t̂ in the pipeline and
concrete services ŝ used in the ecosystem (instance abstraction). We note
that the decoupling of the pipeline of tasks from the ecosystem of services
and the use of two levels of abstraction are fundamental to make the approach
generic and its execution effective, separating the peculiarities of the pipeline
from the capabilities of the ecosystem where the pipelines are executed.

7.2.1 Processing Pipeline

A processing pipeline transforms data according to a specific goal. We assume
our pipelines to be a sequential composition of tasks t.2 Its abstract view can
be defined as follows.

Definition 7.2.1 (p). An Abstract Processing Pipeline p is defined using a

2We note that more complex pipelines, including parallel or alternative tasks, can be
generalized as a set of sequential pipelines similar to composition of services in [51].

110

7.2 Modelling Big Data Analytics Pipeline

BNF-like notation as

p ::= xTI ‘ P ‘A‘ TV y

P ::= ε | TP | P ‘ TP

A ::= ε | TA | A‘ TA

TI ::= stream | fileSystem | DBMS | . . .

TP ::= cleaning | normalization | selection | . . .

TA ::= modeling | prediction

TV ::= TI | TI ‘ visualization |

Operator ‘ is the sequence operator connecting tasks’ input and output in a
pipeline fashion. A generic task t is classified according to its processing type:
i) ingestion tasks TI Ă T (e.g., stream, fileSystem, DBMS), ii) preparation
tasks TP Ă T (e.g., cleaning, normalization and selection), iii) analytics tasks
TA Ă T (e.g., modelling, prediction), iv) visualization tasks TV Ă T (e.g.,
visualization). We note that TI and TV are mandatory for p. We also note
that ingestion tasks in TI can be also used prior or replace the visualization
in TV .

An abstract processing pipeline p is instantiated in a concrete processing
pipeline p̂ as follows.

Definition 7.2.2 (p̂). Given an abstract processing pipeline p, a concrete
processing pipeline p̂ is produced by instantiating each generic task t P p in
an executable task t̂ P p̂ in the form of a function call.

We denote this instantiation process as p p
Ñ p̂.

Example 7.2.1. Let us consider an ingestion task ti P TI , a preparation
task tp P TP and a visualization task tv P TV . An executable ingestion task
t̂i can ingest data from a queue system or files. An executable preparation
task t̂p can select data based on data columns/labels or apply a more sophis-
ticated feature selection approach based on PCA or ICA. An executable
visualization task t̂v can save data to disk or send them to a visualization
service.

111

Chapter 7 Assurance in Big Data Analysis Platforms

7.2.2 Big Data ecosystem

A Big Data ecosystem is composed of services s P S supporting the execution
of the processing pipeline. Its abstract view is defined as follows.

Definition 7.2.3 (e). An abstract Big Data ecosystem e is a 5-tuple xSI ,
SC , SS , SV , SEy, where SS Ă S is a set of storage services, SC Ă S is a set of
computational services, SI Ă S is a set of ingestion services supporting data
collection, SV Ă S is a set of visualization services supporting the visualiza-
tion of the pipeline outcomes, and SE Ă S is a set of environmental services
offering additional non-functional capabilities.

We note that the ingestion services s P SI (e.g., streaming, load from batch)
are connected to tasks in TI , while computational services s P SC (e.g.,
batch, stream, microbatch) are connected to tasks in TP and TA to support
preparation and analytics processing, and to tasks in TI and TV to support
ingestion and visualization processing. Storage services s P SS (e.g., file
storage, NoSQL storage, SQL storage) are primarily connected to tasks in TI
and TV and, if needed, to tasks in TP and TA to store/load temporary data
during the preparation or analysis phases. Visualization services s P SV (e.g.,
dashboards) are connected to tasks in TV . Environmental services s P SE (e.g.,
access control, logging, annotation, authorization) are connected to the entire
pipeline.

Definition 7.2.4 (ê). Given an abstract Big Data ecosystem e, a concrete
Big Data ecosystem ê is produced by instantiating each generic service s P e
in a deployed service ŝ.

We denote this instantiation process as e e
Ñ ê.

Example 7.2.2. Let us consider Example 7.2.1 and a generic service si P e
of type SI , sc P e of type SC , and sv P e of type SV . si is instantiated into a
service ŝi deploying HDFS and then used by the concrete ingestion task t̂i in
p̂ to establish a connection and ingest data. sc is instantiated into a service ŝc
based on Spark computation engine used by the concrete preparation task t̂p
in p̂ to elaborate ingested data. sv is instantiated into a service ŝv deploying

112

7.3 Reference Scenario

ApacheZeppelin(params) used by the concrete visualization task t̂v in p̂ to
set up a Zeppelin visualization notebook where data can be visualized.

7.2.3 Building a Big Data Analytics Pipeline

A Big Data Analytics Pipeline instantiates the abstract processing pipeline
and Big Data ecosystem as follows.

Definition 7.2.5. Given a pair xp, ey, where p is the Abstract Processing
Pipeline (Definition 7.2.1) and e is the corresponding Abstract Big Data
Ecosystem e (Definition 7.2.3), a Big Data Analytics Pipeline is defined as a
pair xp̂, êy, where p̂ is the concrete Processing Pipeline (Definition 7.2.2) and
ê is the corresponding concrete Big Data Ecosystem (Definition 7.2.4), such
that p p

Ñ p̂ and e
e

Ñ ê.

In the following, we refer to xp, ey as Big Data Analytics Pipeline template Π
and to xp̂, êy as Big Data Analytics Pipeline instance I. Template Π defines
technology-independent processing pipelines and environment services; in-
stance I is the concrete technology-dependent instantiation of Π. We assume
a correct instantiation function I

Ñ=
p

Ñ Y
e

Ñ by using the approach in [79]. In
other words, for each template Π, we assume one or more consistent instances
I, defining a one-to-many relation between templates and instances.

7.3 Reference Scenario

Our reference scenario is the H2020 EVOTION Policy Making Big Data Plat-
form (EVOTION Platform in the following) [72, 80], a collaborative solution
offering analytics services or computing/data nodes based on different com-
putation/storage frameworks. The platform, based on the Apache framework
and Big Data Analytics-as-a-Service [79], offers an easy-to-use framework for
policymakers to develop evidence-based policies following analytics results.
Policymakers design or select specific analytics templates to be instantiated
and executed by the platform in a fully assisted and privacy-preserving way.
We note that this scenario is very challenging from an assurance evaluation

113

Chapter 7 Assurance in Big Data Analysis Platforms

point of view, having pipeline composed as a service depending on the poli-
cymaker needs. We also note that assurance is fundamental to increase the
trust in such a platform, which is executed in critical domains (e.g., health),
where public policies and in turn pipelines use high sensitive data.

In our scenario, i) a policymaker c wants to continuously execute a Big Data
analytics pipeline ensuring specific non-functional requirements R, expressed
in template Π; ii) the service provider sp offers via the EVOTION Platform
a valid executable instance I for template Π.

Policymaker c requests verifiable assurance from service provider sp that its
non-functional requirements R on template Π are guaranteed on the running
instance I.

Such guarantees must be continuously checked by the assurance process to
cope with emerging and evolving vulnerabilities and weaknesses. We remark
that non-functional requirements R have the same level of abstraction used
for the template, being independent by the specific pipeline implementation
and deployment ecosystem, and taken from a controlled vocabulary.

Example 7.3.1 (Running Example). Let us consider a template Π = xp, ey
in Definition 7.2.5 defined as in Equation 7.1.

p = xfileSystem‘ normalization‘modelling(clustering) ‘ fileSystemy

e = xLoadFilesystem,
[
BatchProcessing,Orchestration

]
, StoreF ilesystem,

ε,AccessControl(AC)y
(7.1)

We note that the visualization service is not needed in this example, since
it is focused on building a model. A concrete instantiation I

Ñ of the above
template Π into a Big Data Analytics Pipeline Instance I can be defined as
xp̂, êy, as in Equation 7.2.

p̂ = xloadFromHDFS() ‘ normalization(all) ‘ kmeansModeling(k)‘

saveToHDFS(model)y

ê = xHadoop, [Spark,Airflow],Hadoop, ε, [Knox,Ranger]y
(7.2)

We note that SV = ε means that the ecosystem service for visualization is
empty.

114

7.3 Reference Scenario

Table 7.1: Running example definition: tasks, template Π and instance I.

(a) Tasks in p and p̂.

t t̂

TI t1 = fileSystem t̂1 = loadFromHDFS()

TP t2 = normalization t̂2 = normalization(all)

TA t3 = modelling(clustering) t̂3 = kmeansModeling(k)

TV t4 = fileSystem t̂4 = saveToHDFS(model)

(b) Services in e and ê.

s ŝ

SI s1 = LoadFilesystem ŝ1 = Hadoop

SC s2 = BatchProcessing ŝ2 = Spark

SC s3 = Orchestration ŝ3 = Airflow

SS s4 = StoreF ilesystem ŝ1 = Hadoop

SV s5 = ε

SE s6 = AC : Authentication ŝ4 = Knox

SE s6 = AC : Authorization ŝ5 = Ranger

(c) Definitions of the pipeline template (7.3) and instance (7.4).

Π = xp, ey with p = xt1 ‘ t2 ‘ t3 ‘ t4y

e = xs1, [s2, s3], s4, s5, s6y
(7.3)

I = xp̂, êy with p̂ = xt̂1 ‘ t̂2 ‘ t̂3 ‘ t̂4y

ê = xŝ1, [ŝ2, ŝ3], ŝ1, ε, [ŝ4, ŝ5]y
(7.4)

Table 7.1 summarizes the Example 7.3.1. The pipeline instance p̂ defines an
ingestion task (TI) to ingest batches of data from HDFS (t̂1 = loadFromHDFS())
using the Hadoop service ŝ1, performs a preparation task (TP) normalizing all
the data fields (t̂2 = normalization(all)) to fit into a modelling task (TC) for
k-means model creation (t̂3 = kmeansModeling(k)) based on Spark service
ŝ2.

The model is then saved on HDFS (t̂4 = saveToHDFS(model)) using the

115

Chapter 7 Assurance in Big Data Analysis Platforms

Hadoop service ŝ1 for later usage. The entire pipeline is orchestrated with
Airflow service ŝ3. To execute such pipeline an access control is requested
using Knox (authentication) and Ranger (authorization), ŝ4 and ŝ5 respec-
tively.

7.4 Assurance Evaluation Methodology for Big
Data Analytics Pipeline

We propose a methodology for assurance evaluation of Big Data analytics
pipeline that implements our assurance process in Section 7.1 and targets
the analytics pipeline modelling in Section 7.2. More specifically, it is based
on three sequential steps: i) template annotation that annotates the Big
Data analytics pipeline Template (template in the following) with generic
requirements, ii) instance annotation that annotates the Big Data analytics
pipeline instance (instance in the following) with specific requirements, and
iii) assurance evaluation that evaluates the overall assurance according to the
assurance process in Section 7.1.

7.4.1 Template annotation

The template annotation is a process that annotates template Π = xp, ey
with a set of non-functional requirements r P R taken from two vocabularies
Rp,Re Ă R, such that Rp Y Re = R. We define two labelling functions
i) λ : T Ñ Rp that associates each tasks t P T in pipeline p with a set of
non-functional requirements r P Rp, ii) a labelling function γ : S Ñ Re that
associates each services s P S in the pipeline ecosystem e with a set of non-
functional requirements r P Re. We formally define an annotated Big Data
analytics pipeline template as follows.

Definition 7.4.1 (Πλ,γ). An annotated Big Data analytics pipeline template
is defined as Πλ,γ where λ and γ are two labelling functions such that: i) λ as-
signs labels λ(ti) corresponding to pipeline requirements in Rp to be satisfied
by task ti; ii) γ assigns a label γ(si) corresponding to service requirements in
Re to be satisfied by service si.

116

7.4 Assurance Evaluation Methodology for Big Data Analytics Pipeline

We note that labelling function λ(γ, resp.) can assign label λ(p)(γ(e), resp.)
corresponding to pipeline (ecosystem, resp.) requirements in Rp(Re, resp.)
to be satisfied by pipeline p (ecosystem e). We also note λ(p) refers to re-
quirements on the pipeline structure (e.g., the sequence of tasks), while γ(e)
refers to the environment where the services are deployed (e.g., the operating
system or the service container).

Example 7.4.1 (Annotated template). Following Example 7.3.1, a client
specifies requirement Confidentiality in transit in Rp at template level. A
complete annotation for requirement Confidentiality is discussed in Section 11.4.
Template Π can be annotated as follows:

• All tasks (˚) in p P Π are annotated with λ(˚) = Confidentiality in transit,
and the entire pipeline p P Π is annotated with λ(p) = Pipeline integrity

• All services (˚) in e P Π are annotated with γ(˚) = Confidentiality in transit.

We note that tasks, services, the pipeline and the service ecosystem can be
annotated with zero or more requirements according to Definition 7.4.1. For
instance, γ(e) was empty in Example 7.4.1.

7.4.2 Instance annotation

The instance annotation is a process that annotates instance I = xp̂, êy with a
set of concrete requirements r̂ P R̂ taken from two vocabularies Rp̂,Rê Ă R̂,
where R̂ = Rp̂ Y Rê is a specialization of R = Rp Y Re.

We define two labelling functions i) θ : T̂ Ñ Rp̂ that associates each invo-
cation of t̂ P T̂ in the pipeline p̂ with a set of non-functional requirements
r̂ P Rp̂, ii) labelling function ψ : Ŝ Ñ Rê that associates each invocation of
ŝ P Ŝ in the ecosystem model ê with a set of non-functional requirements
r̂ P Rê. Similarly to template annotation, we formally define an annotated
Big Data analytics pipeline instance as follows.

Definition 7.4.2 (Iθ,ψ). An annotated Big Data analytics pipeline instance
is defined as Iθ,ψ where θ and ψ are two labelling functions such that: i) θ as-
signs a label θ(t̂i) corresponding to pipeline requirements in Rp̂ to be satisfied

117

Chapter 7 Assurance in Big Data Analysis Platforms

by task t̂i; ii) ψ assigns a label ψ(ŝi) corresponding to the service requirements
in Rê to be satisfied by service ŝi.

We note that labelling function θ(ψ, resp.) can assign label λ(p̂)(γ(ê), resp.)
corresponding to pipeline (ecosystem, resp.) requirements in Rp̂(Rê, resp.)
to be satisfied by pipeline p̂ (ecosystem ê).

An annotated instance Iθ,ψ is obtained by an annotated template Πλ,γ ac-
cording to transformation function R

Ñ as follows.

Definition 7.4.3 (RÑ). R
Ñ is a transformation function that receives as in-

put the annotated template Πλ,γ and the pipeline instance I, and gener-
ates as output an annotated pipeline instance Iθ,ψ, where: i) Π

I
Ñ I and

ii) the generic pipeline requirements annotated with λ P Π are specialized into
instance-specific requirements annotated with θ P I and the generic ecosys-
tem requirements annotated with γ P Π are specialized into instance-specific
requirements annotated with ψ P I.

We note R
Ñ can be either a manual or an automatic transformation. Any

generic requirements r P R can be specialized in one or more instance-specific
requirement r̂ P R̂, thus leading to one or more annotated pipeline instances
Iθ,ψ. For conciseness, we consider the instance annotation function R

Ñ as
given and carried out by the service provider on their instances a priori,
according to the available templates. In case of multiple possible instantia-
tions, the service provider selects the best one according to its deployment
strategy.

Example 7.4.2 (Annotated Instance). Let us consider the annotated tem-
plate Πλ,γ in Example 7.4.1. One possible annotated analytics pipeline in-
stance Iθ,ψ can be as follows.

• The pipeline instance p̂ P I is annotated with

• The ecosystem instance ê P I is annotated with ψ(ŝ1) = Encrypted
HDFS and Inter-node communication security, ψ(ŝ2) = Inter-node
communication security, ψ(ŝ3) = Orchestrator Confidentiality and ψ(ŝ4) =
Communication channel security.

118

7.4 Assurance Evaluation Methodology for Big Data Analytics Pipeline

We note that tasks t̂1 = loadFromHDFS() and t̂4 = saveToHDFS(model)
are not affected by the request of confidentiality in transit expressed at tem-
plate level in Example 7.4.1. This requirement is in fact considered by the
ecosystem level only in the specific instance in Example 7.4.2 and addressed by
ŝ1 = Hadoop. In other words, annotation λ(t1) = Confidentiality in transit is
transformed by the instance annotation function R

Ñ to θ(t̂1) = H and θ(t̂4) =
H. We also note that confidentiality in transit is instantiated as θ(˚) =
Avoid connection to external services and θ(˚) = Avoid use of vulnerable libraries
for all tasks (˚) in the pipeline. We finally note that θ(p̂) = Pipeline Integrity
refers to the verification of the pipeline structure and is associated with the
corresponding requirement at service level ψ(ŝ3) = Orchestrator Confidentiality,
while ψ(ŝ4) = Communication channel security refers to the authentication
channel used by ŝ4 (i.e., Knox).

Client

Service
Provider

Pipeline
Template
Π = 𝑝, 𝑒

Requirements
R

Pipeline
Instance
𝐼 = Ƹ𝑝, Ƹ𝑒

՜
I

՜
R

Annotated
Instance

𝐼𝜃,𝜓

Annotated
Template

Π𝜆,𝛾

Assurance
Evaluation

produces

used for

used forreferred to

taken from

Controlled
Vocabulary
(𝑅𝑝 ∪ 𝑅𝑒)

Instance
requirements

𝑅 Ƹ𝑝 , 𝑅 Ƹ𝑒

specialized
in

՜
𝑆

used for
Assurance

Confidence Levels

referred to

aggregated by

chooses

requests

offers

used
for

Figure 7.3: The Assurance methodology for Big Data Analytics Pipeline.

7.4.3 Assurance evaluation

The assurance evaluation executes one or more assurance processes A in Def-
inition 7.1.3 (using the architecture in Figure 7.2) on Iθ,ψ such that Πλ,γ

R
Ñ

Iθ,ψ. It can be formally defined as follows.

Definition 7.4.4 (Assurance Evaluation). Let us consider template Πλ,γ

and corresponding instance Iθ,ψ, such that Πλ,γ
R
Ñ Iθ,ψ. For each pair

xτ, ry P Πλ,γ , where τ is a task t, a service s, a pipeline p, or an ecosystem

119

Chapter 7 Assurance in Big Data Analysis Platforms

e annotated with requirement r P R, the assurance evaluation first retrieves
the corresponding set of pairs xτ̂i,r̂iy P Iθ,ψ, where τ̂i is an executable task t̂, a
deployed service ŝ, a concrete pipeline p, or a concrete ecosystem e annotated
with concrete requirement r̂ P R. It then computes the overall assurance
confidence level Lτ̂i,r̂i = min(Aτ̂i,r̂i).

We note that the assurance evaluation calculates the assurance confidence
level of each xτ, ry expressed by the client on template Πλ,γ . To this aim, it
aggregates the results of multiple assurance processes A executed on the cor-
responding xτ̂i,r̂iy P Iθ,ψ, and computes the overall assurance confidence level
Lτ,r as the minimum assurance confidence level. More advanced approaches
will be investigated in our future work. Figure 7.3 shows a complete view of
our methodology applied to the scenario in Section 7.3. We note that, the
Service Provider can instantiate a given template (IÑ) or search for a suitable
valid instance following our approaches in [79] and [79] respectively.

Following the assurance process A in Section 7.1.1, the assessment is carried
out via a specific set of assessment probes Pi suitable for the target τ and
the specific requirements r̂ annotated on the corresponding targets by θ or ψ.
Probes are parametric and use the hooks offered by τ to carry out the inspec-
tions. To accomplish the heterogeneity of assurance verification, we define
different assessment probes (see Table 7.2): i) pipeline probes focusing on the
verification of pipeline tasks and orchestration, ii) service probes focusing on
the verification of the Big Data services executing the pipelines, iii) ecosys-
tem probes focused on the lower layers involving infrastructure behind the
Big Data ecosystem.

Example 7.4.3 (Probes). Let us consider a given task t̂2 =
normalization(all) annotated by θ(t̂2) with a requirement r̂θ1 = Avoid vulner-
able libraries and a given ecosystem service ŝ4 = Knox annotated by ψ(ŝ4)

with a requirement r̂ψ1 = Authentication-enabled. A Code Vulnerability Check
Probe Pi can be used to check whether task t̂2 relies on vulnerable libraries
reducing the confidentiality (r̂θ1). A Configuration Check Probe Pj can be
used to check whether authentication is requested by service ŝ4 to trigger an
analytics via a well-configured Apache Knox service (r̂ψ1). A Testing Probe
Pk can be used to check whether authentication is working, while trying to
execute the pipeline (r̂ψ1).

120

7.4 Assurance Evaluation Methodology for Big Data Analytics Pipeline

Probe Name Description
Task probes

Code Inspection search instructions/pattern
Dependency Check find vulnerable dependencies
Code Vulnerability Check search vulnerable code
Lineage verify sequence of actions using logs

Pipeline probes
Parameters Check check tasks’ actual parameters
Orchestration Check check the workflow structure

Service probes
Vulnerability Check search for vulnerability
Configuration Check parse and verify configuration

Ecosystem probes
Infrastructure targets lower layers such as OS (see [50])

General purposes probes
Testing perform specific test cases on a target
Monitoring monitor a target ore a time frame

Table 7.2: Types of assessment probes.

The probes are structured according to our probe paradigm detailed in [81]
where the probe receives parameters for connecting to the target (e.g., API
hooks) and instruction on how to match the information retrieved by the tar-
get (e.g., test cases and expected outputs). It performs i) connection, ii) in-
formation retrieval and iii) matching against expectations. The information
retrieved and the matching outcomes constitute the probe evidence.

Evidence EV retrieved by the probes is evaluated (see Definition 7.1.2) and
used to compute the assurance level Aτ,r̂ (see Definition 7.1.3) of the target
τ with respect to the given requirement r̂.

Example 7.4.4 (Assurance Confidence Levels). Let us consider Example 7.4.3
and the following evidence collected by corresponding assessment probes.
Probe P1(t̂2, r̂

θ
1) produces evidence EV1 = [CV E´2018´1334, 4.7], referring

121

Chapter 7 Assurance in Big Data Analysis Platforms

to a weakly-vulnerable (severity 4.7) version of spark library used in normal-
ization code; probe Pj(ŝ4, r̂ψ1) produces evidence EV2 = [enabled = true],
referring to a correctly configured Apache Knox enabling authentication for
pipeline execution; probe Pk(ŝ4, r̂

ψ
1) produces evidence EV3 = [(xvalid ´

user, valid´ pwdy, allow), (xvalid´ user, wrong ´ pwdy, deny), . . .] referring
to a set of positive testing results concerning authentication verification for
the pipeline execution. Two evaluation processes analyse the collected ev-
idence to check the support of the requirements r̂θ1 and r̂ψ1 . In this exam-
ple, E1(EV1, r̂

θ
1) = 0.5, due to the presence of a vulnerable library with a

low severity score (i.e., Common Vulnerability Scoring System (CVSS)), and
E2(EV2 Y EV3, r̂

ψ
1) = 1, due to the positive checks on the Knox authenti-

cation. The corresponding assurance confidence levels (Definition 7.1.3) are
At̂2,r̂θ1 = 0.5 and Aŝ4,r̂ψ1

= 1, respectively.

We not that, the outcome of the assurance process is a set of assurance
confidence levels on the annotated pipeline instance Iθ,ψ. Following Defini-
tion 7.4.4, the assurance confidence levels are aggregated in the overall assur-
ance confidence level. Considering the assurance levels in Example 7.4.4, the
overall assurance confidence level is equal to 0.5, the minimum between the
retrieved assurance confidence levels.

We note that our assurance methodology immediately react against events
impacting on the assurance evaluations, retrieving new evidence and comput-
ing the new assurance level. Events include new discovered vulnerabilities,
new versions of ecosystem services, updates on the task or pipeline code, or
new more effective probe deployed on the probe repository. In case the assur-
ance confidence level is no more satisfactory, the instance can be replaced with
a new one if the requested changes are major. The instance can be adapted
in terms of annotations if the requested changes are minor (e.g., new service
versions, new probes or new vulnerabilities). While we consider adaptation
for our future work, we provide a preliminary discussion in the experiments
in Section 11.4.

122

7.5 Discussion

7.5 Discussion

The increasing trend towards Big Data process outsourcing and the lack of Big
Data trustworthiness and transparency represent the major barriers against
high-quality Big Data computations. Users, in fact, (fully) anonymise data
and results to reduce their liability in case of data breach. The assurance
verification in Section 7.1 permits to unleash the full power of Big Data,
fostering its adoption in critical scenarios where sensitive data are used and
promoting the “Big Data-as-a-Service” paradigm where trustworthiness is of
paramount importance. It is important to remark that Big Data transparency
is also mandatory when anonymized data are used, for instance, to ensure that
the level of anonymity reached with anonymized data is not violated during
processing (i.e., within the pipeline) or while presenting the final results due
to correlation with different data sources [82].

123

Chapter 8

Assurance Aware
Deployment
infrastructures

Deployment solutions manage the life cycle of applications, networks and re-
sources within large and heterogeneous environments. In order to achieve
this, multiple levels of abstractions are adopted to manage the underlying
hardware and software. This approach delegates the responsibility of defin-
ing the expected outcome to the user, while the system takes care of (most)
implementation details. As previously described in Section 2.3, resources,
deployments and configurations are represented in code following common
and publicly available resource schema. These configurations enable the def-
inition of SLOs for several features, such as application scheduling, network
priority, storage availability and retention, and performance budgets. Appli-
cation scheduling is affected by these SLOs, introducing hard or soft limits
that must be met by the chosen deployment solution provided by the de-
ployment engine. Most SLOs focus on performance and resource usage of
applications, and are therefore neglecting other interesting aspects of NFPs,
such as security, privacy and automation.

We aim to provide certified NFPs in application deployments in accordance
with user requirements. To accomplish this objective, we must: i) expand
the resource system to include the ability to specify NFPs ii) implement

125

Chapter 8 Assurance Aware Deployment infrastructures

NFPs assurance in the deployed applications and deployment targets, creating
contracts to verify the requested NFPs and suitable Assurance Agents (AAs)
iii) the assurance results must be integrated into the application scheduling
system. Furthermore, when deploying applications, the hosting provider may
offer services that can be utilised to meet he SLAs, such as authentication and
permission management solutions. Alternatively, supplementary applications
may be required to provide these services.

In this scenario, continuous verification of the NFPs enables the automation
and adaptive deployment of applications in response to changes in the deploy-
ment infrastructure, thereby ensuring the dependability of both the platform
and the applications deployed on top of it. This is particularly significant
in an E2C environment due to its heterogeneous and distributed nature and
reliance on communication between data centres.

8.1 Continuous Non-Functional Property
assurance in deployment infrastructure

Continuous verification of NFP is crucial for automating the deployment life-
cycle in Cloud and E2C infrastructures. The user’s expectation is to provide
a recipe for the intended deployment, including software packages, config-
urations and requirements, and to receive a fully operational system. The
recipe is received by the service provider, which schedules the deployment
using the data centre resources. The scheduling process attempts to solve an
optimisation problem, looking for viable configurations that meet the user’s
requirements and minimise some combination of parameters, usually cost,
power consumption and machine under-utilisation [83, 84]. Generally, only
a small part of NFPs are considered for these requirements, falling under
the umbrella of the resources performance and availability families, and only
more recently Cloud providers started to adopt security and privacy NFPs.
The scheduling system employs a simplified continuous assurance process for
assess the system’s condition and determine whether the user requirements
can be fulfilled. Specifically, it utilizes system metrics to gauge the avail-
able resources and the status of the deployment target, calculating general
availability and behaviour of the deployed applications.

126

8.2 Introduction

8.1.1 Extending deployment infrastructures

Scheduling systems have the potential to expand their coverage to encompass
more complex NFPs as well as multiple layers of deployment. The system’s
state can be measured using transparent monitoring techniques or by ad hoc
probes and made available through monitoring endpoints, as discussed in
Section 3.2.3. This allows to have a more complete picture of the lower layers
of the deployment target, thus allowing us to infer stronger properties over
the system.

The present definitions of SLAs primarily concentrate on the performance-
based NFPs and are restricted to soft and hard thresholds. Consequently,
they lack the ability to articulate more sophisticated necessities, like data
privacy and confidentiality, network security policies, and availability. To
address these limitations, we have introduced the concept of function-based
contracts as SLAs. Advanced SLAs are formalised through contracts, grant-
ing users a formal and transparent method to ensure requirements feasibility
and NFP guarantees that works across multiple providers, addressing Gap G2

Strong reliance on infrastructure. These contracts depend on a unified set of
metrics for collecting data on the system’s state and incorporate arbitrarily
complex logic statements to describe how the intended property should be
verified. This results in a solution that is both more efficient and accurate.
Both contracts and metrics are specified and released by a CAs and can be
adopted by Cloud providers and users as a common basis for NFP verifica-
tion. This enables citing of a specific contract directly from the deployment
definition, achieving greater transparency and adherence to standardisation
efforts.

8.2 Introduction

According to IDC’s Data Age 2025 white-paper, the worldwide data will grow
to 175 zettabytes by 2025. This growth will be driven by the increment in
speed (average speed of 110 Mb/s by 2023 according to Ericsson1) and in a
number of connected data sources (almost 30 billion of IP devices and half of

1Mobile data traffic outlook available at https://www.ericsson.com/en/reports-and-
papers/mobility-report/dataforecasts

127

https://www.ericsson.com/en/reports-and-papers/mobility-report/dataforecasts
https://www.ericsson.com/en/reports-and-papers/mobility-report/dataforecasts

Chapter 8 Assurance Aware Deployment infrastructures

them will be M2M devices by 2023 according to CISCO2). Ericsson predicts
to reach 288 exabytes per month of traffic exchanged in the mobile network
by 2027, most of them due to the adoption of high-speed 5G connections.

The current Cloud architectures cannot effectively handle such data growth
across the network, becoming a blocking factor to unleashing the real poten-
tial of data eager technologies such as IoT platforms and AI. Edge and Fog
computing constitute part of the missing link between Cloud and the data
sources, moving computation and storing capabilities as well as communica-
tion and decisions closer to the network periphery, trying to address the data
handling gap. While Fog is meant to work with Cloud involving a potentially
extensive number of layers in between, Edge typically has fewer layers and not
always requires a Cloud central point. In addition, Fog potentially includes
the pervasive handling of resources such as networking and storage. In this
paper, we focused on Edge architectures as means to deploy a data-intensive
pipeline that also requires Cloud facilities to handle the analytics executions
and present the final results. More specifically we focused on critical pipeline
acquiring and processing sensitive data and requiring advanced security and
privacy protection mechanisms [85]. Such protections have to be selectively
activated depending on the user and context where the pipeline is executed.
In order to build the continuum, in addition to multiple layers of on-premises
Edge nodes, we also consider MEC nodes offered by telco operators using
the 5G core network. The 5G core network is a large composition of services
with complex interactions and processes, including the self-organization of
network functionalities, collaboration with other networks and management
of user data and traffic. 5G is considered an enabling technology for inte-
grating resource-intensive E2C computing with IoT and mobile computing,
bridging the gap between powerful data centres and low-power devices. With
the increment of 5G adoption, there will be an increment in the need for mi-
cro data centre capillary distribution as well as 5G facilities to support MEC.
These facilities will be the natural landing Edge platform for acquisition and
preprocessing tasks of next-generation data-intensive pipelines requiring ad-
vanced QoS such as low latency security and privacy [86]. In this scenario
of Edge continuum includes telco operator facilities being capable of orches-
trating and deploying data-intensive pipelines while maintaining specific QoS
is of paramount importance. In this paper, we present an Edge continuum
orchestrator builder that is capable of generating executable orchestrations

2White-paper available at https://www.cisco.com/c/en/us/solutions/collateral/
executive-perspectives/annual-internet-report/white-paper-c11-741490.html

128

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

8.3 Reference Scenario

for the different continuum layers (including 5G Edge) guaranteeing a specific
QoS across the continuum.

8.3 Reference Scenario

Our reference scenario considers a client that wants to deploy its data-intensive
pipeline on a given 5G-enabled Edge continuum architecture made of i) Edge
nodes on-premises ii) mobile Edge nodes in the core network of a given telco
operator and iii) Cloud nodes. The client also expresses specific QoS re-
quirements in terms of security/privacy and performance to be met by the
deployment. The pipeline is made of tasks that can be dynamically selected
(a priori) and orchestrated to be deployed in the 5G-enabled Edge contin-
uum with a specific analytics goal. More specifically the pipelines of our
scenario are focused on critical data-intensive analytics including ingestion
and complex privacy-preserving data preprocessing activities that need to be
effectively orchestrated in the continuum in order to avoid as much as possible
traffic congestion.

8.3.1 Requirements

Considering the above scenario a number of crucial requirements, for pipeline
deployment and orchestration in 5G-enabled Edge continuum, has to be con-
sidered as follows:

• [R1] Interoperability. It refers to the possibility of orchestrating
tasks at multiple layers of the Edge continuum.

• [R2] Transparency/auditability. It refers to the need of inspecting
the status of each task and of the entire orchestration with regards to
functional and QoS requests.

• [R3] Reliability, Availability, and Serviceability (RAS). This
triad is focused on ensuring reliable and available application pipeline
in the continuum. More in details reliable and available deployment
and orchestration. Serviceability refers to the need of ensuring the

129

Chapter 8 Assurance Aware Deployment infrastructures

maintainability of the orchestration meaning the possibility to mod-
ify the orchestration dynamically if needed. This requirement is also
clearly related to R2 requiring the ability to inspect and re-deploy or-
chestrations if requested.

• [R4] Openess. In our scenario openness can be seen as the compos-
ability of tasks in the pipeline and of orchestrations in the continuum
via open standards e.g., Fast Health Interoperable Resources (FHIR).
It is related also to R2 and R3 (Serviceability) requirements.

• [R5] Agility. It refers to the ability to transform a great volume
of data into actionable insights. More specifically being capable of
making decisions as soon as the data can lead to meaningful context
and as close as possible to the data sources. It can be also seen as the
need to avoid network dependencies.

• [R6] Programmability. It refers to the dynamicity of deployment
and the adaptability of the orchestrations. In our scenario programma-
bility refers primarily to the coding of adaptive orchestrations ensuring
optimal deployment addressing QoS needs.

• [R7] Security. Security is a quite transversal requirement for dis-
tributed systems. In the context of our scenario it assumes a more
holistic fashion including the security of Edge nodes, 5G core, com-
munications, deployed tasks and deployment and orchestration mech-
anisms.

• [R8] Privacy. Similarly to security, privacy in distributed systems
requires addressing a number of challenges. In our scenario, we con-
sider the privacy of the data potentially spreading in different forms
across the continuum. For instance it means that the Edge nodes have
to provide i) contextual integrity and isolation, ii) control access and
aggregation of privacy-sensitive data before it leaves the Edge, depend-
ing also on the access right of the actors executing the pipeline [71],
iii) segregation capabilities.

We note that most of the above requirements share the same generic needs
expressed by the Fog pillars of OpenFog [87] but they are declined for critical
pipeline orchestration in 5G-enabled Edge continuum.

130

8.4 Building Blocks

8.4 Building Blocks

In the following, we present our building blocks. More specifically we describe
the notion of Edge computing, previously described in Section 4.1, with spe-
cific reference to the peculiarities that are of interest for our Big Data pipeline
scenario, shown in Section 8.3. We then provide our notion of a data-intensive
pipeline, where data is collected, processed, ingested and analysed across the
Edge continuum. Concluding we describe the 5G architecture to show the
basic components enabling the 5G MEC.

8.4.1 Data-intensive Pipeline

A data-intensive pipeline is a data acquisition and analytics procedure adopted
for instance in the context of massive IoT and for the acquisition of distributed
streaming data sources. Nowadays these types of acquisition procedures are
becoming central for a number of applications including the AI-empowered
services, where data are fundamental to generating and updating AI models.
In this paper, we consider the data-intensive pipeline as made of tasks that
can be deployed in a distributed fashion and orchestrated in order to fulfil the
acquisition goal. The pipeline tasks include analytics tasks such as clustering,
acquisition oriented procedures like data source connectors, or data gather-
ing/digitalisation, but also data preprocessing procedures aimed for instance
to aggregate data, perform space reduction, anonymisation, sparsity reduc-
tion, early fusion, latent data space transformations, to name but a few. In
the framework of the Edge continuum, considering the impact of data flows in
terms of networking saturation and therefore latency, the effectiveness of the
acquisition pipeline in filtering and transferring the minimum set of mean-
ingful data only, is fundamental. On the other hand, the pipelines cannot
be easily generalized and they are applications dependent. Therefore they
have to be deployed dynamically to address different application needs. The
pipeline orchestrator should be capable of selecting suitable tasks and de-
ploying them in suitable edge continuum locations in order to fulfil a specific
functional goal and QoS requirements (e.g., latency, privacy).

131

Chapter 8 Assurance Aware Deployment infrastructures

8.5 Orchestration Builder

In general, the process of orchestration refers both to services, workload, and
resources. In the Cloud context, orchestration automates the coordination
and management of distributed services, computing resources and middle-
ware. It is also at the basis of the Cloud scaling, elasticity and the self-service
model. Nowadays there is an ongoing research effort in the direction of in-
cluding QoS compliance in orchestration where also NFPs considered [50,51].
However, the current approaches are not suitable for addressing the level of
dynamicity and heterogeneity introduced by the 5G-enabled Edge continuum
and by the needs of new-generation data-intensive pipelines. An advanced
orchestration approach is needed to support the dynamic deployment of ser-
vices in such an Edge continuum, where applications can be geo-distributed
and storage decentralized posing new challenges in terms of integrity and
reliability. In addition, in this paper, we considered 5G-enabled Edge scenar-
ios, making the orchestration even more complex requiring to have a more
deep understanding of the peculiarities of the landing Edge node. Currently,
one of the most adopted approaches to distribute applications addressing the
heterogeneity of the landing platform is via containerization [88], however,
there is still the need to detail topology and orchestration planning and it
is quite complex to satisfy QoS requirements. To address these limitations,
orchestration standards have been defined to describe the expected configu-
ration of a deployment, while leaving the task of deciding the concrete setup
to an orchestrator. The concept of containers and virtualisation is largely
used to address distributed systems needs even in telco sector which is be-
coming more and more softwarised. For instance, the 5G architecture (see
Section 4.2) adopts NFV to address the need for flexibility and elasticity but
requires a more complex orchestration approach leading to the ETSI MANO
framework adopted by the 5G Network.

In this paper, we propose an orchestrator builder capable of generating pre-
scriptive orchestrations for the different continuum layers addressing their
specificity and linking them together to build the entire meta orchestration.
A meta orchestration is a Directed Acyclic Graph (DAG) made of tasks de-
fined as follows.

Definition 8.5.1 (Meta Orchestration). A meta orchestration O(V,E) is a
DAG made of a vertex vi P V one of each task ti building the orchestration.

132

8.5 Orchestration Builder

It includes special vertices as follows: i) root vertex vr, ii) two flow splitting
vertices vb, v‘ to structure alternative (b) and parallel (‘) executions of
tasks. Splitting vertices are used to begin the splitting and merge the results
for tasks that need to be executed in an alternative or parallel fashion. E is
the set of edges ei connecting the vertices forming the DAG.

The meta orchestration is annotated with QoS requirements ri P R (e.g.,
latency, privacy) and constraints ci P C (e.g., deployment on Cloud) forming
an annotated meta orchestration OR,C . More specifically, both vertices and
edges in the meta orchestration O(V,E) can be annotated with specific ri or
ci. For instance a security requirements ri = Confidentiality can be associated
to an edge (i.e., communication channel) ej denoted as erij and a constraint
ci = On-premises can be associated to a vertex (i.e., a task of the pipeline)
vj denoted as vcij

Definition 8.5.2 (Orchestration Builder). Orchestration builder is a func-
tion of the form B : (OR,C , A) Ñ Ôi ¨ ¨ ¨ Ôn. It takes in input the annotated
meta orchestration OR,C , and the description of the landing continuum archi-
tecture A, and produces as output one or more orchestrations Ôi partitioning
the original meta orchestration OR,C . Each orchestration Ôi is generated in
order to be suitable for the deployment on the landing Edge layers and to
address both QoS and constraints expressed in OR,C . The orchestrations Ôi
are merged by special input and output vertices (vð and vñ respectively) in
order to form a complete pipeline where: i) V P O Ă Yi=1¨¨¨n(V̂i P Ôi); ii) @

e P E between two vertices vi and vj either D ê P Ê between v̂i and v̂j or D êi
between v̂i and vñ and D êj between vñ and vð and D êk between vð and v̂j ;
iii) vertices vð and vñ are replaced with ad hoc tasks capable of setting up a
data communication channel using the peculiarities of the landing edge node;
iv) vertices vb, v‘ are replaced with tasks capable of splitting the execution
flows potentially to different node instances; v) normal vertices are replaced
with tasks implementing the specific functionality requested.

Figure 8.1 shows the deployment of a given meta orchestration O(V,E) on
our reference architecture made of i) on-premises Edge nodes, ii) 5G Edge
nodes and iii) a central Cloud node. We note that the meta orchestration
O(V,E) model a pipeline made of six different tasks (t1 ¨ ¨ ¨ t6) to be executed
consecutively. We also note that tasks t1, t2 and t3 are selected by the
orchestration builder to be part of the Edge orchestration, t4 is the only

133

Chapter 8 Assurance Aware Deployment infrastructures

task selected for 5G Edge orchestration while t5 and t6 are selected to be
orchestrated on the Cloud. The meta orchestration is annotated with QoS
r1 on the communication edges and constraint c1 on the tasks requiring on-
premises deployment. The orchestrator builder replaced the input and output
vertices (vñ and vð) with communication-oriented tasks tñ3 , tð4 , tñ4 and tð5
in order to establish a communication flow between the orchestrations.

Figure 8.1 also shows that Edge and Cloud nodes share the same orchestration
technology based on Kubernetes, while the 5G Edge node uses the MEAO
and NFV-based orchestration of MEC services. We note that our reference
architecture allows deployments on multiple Edge and 5G Edge nodes while
considering for the sake of simplicity a single centralized Cloud node.

r1

Edge Node

Kubernetes

EEdge Deployment

App App

Edge Node

Kubernetes

EEdge Deployment

App App

5G Node

MEP

AF

MEP

MEAO

AF

MEP

MEC MEC

5G Node

MEP

AF

MEP

MEAO

AF

MEP

MEC MEC

pipeline t1 t4 t5 t6

on premises
orchestration

on net
orchestration

on cloud
orchestration

t4⇒t4⇐

5G Node

NWDAF PCF

MEP

AF

MEP

UPF MEAO

AF

MEP

MEC MEC

Edge Node

Kubernetes

KubeletKubelet

API
Server

Controller
Manager

Scheduler Kubelet

EEdge Deployment

App App

t3t2

v1 v4 v5 v6
annotated

meta
orchestration

v3v2

orchestration
builder

QoS
Constraints

r1c1 c1 r1 r1r1 r1 = Confidentiality
c1 = On premises

Cloud Node

Kubernetes

KubeletKubelet

API
Server

Controller
Manager

Scheduler Kubelet

ECloud Deployment

App App
deployment

t5⇐t3⇒

Figure 8.1: Our methodology applied to a given meta orchestration deployed
on a given 5G-enabled Edge continuum architecture.

134

8.5 Orchestration Builder

8.5.1 QoS on Continuum Edge

In addition to the functionality, our orchestration builders have to gener-
ate orchestrations that are compliant with specific QoS requirements. Our
orchestration builder is capable of considering QoS requests while building
the orchestrations considering also the different types of nodes of the con-
tinuum. Based on the deployment technologies we can differentiate between
i) on-premises Edge and Cloud nodes, ii) 5G Edge nodes. For the sake of
conciseness let us consider security/privacy QoS related only.

Security aspects of on-premises Edge and Cloud Orchestration should
use the security/privacy mechanisms provided by the node and add additional
ones in case of necessity within the pipeline. For instance edge between v4
and v5 in Figure 8.1 is subject to ri. It means that the communication task
tñ3 and tð4 generated by the orchestration builder have to provide a confiden-
tial communication channel. If the landing node is not capable of providing
the means to establish such a secure communication channel, the data have
to be encrypted prior to the be sent by tñ3 and decrypted by tð4 prior to
being passed to the receiver.

We note that at this level the orchestration should be i) aware of the secu-
rity/privacy features of the landing node and ii) capable of enabling/using
them on request, iii) capable of adding security/privacy mechanisms between
different orchestrations.

Security aspects of Edge in 5G In the current 5GS architecture the use
cases related to the application of user plane security are limited to the se-
curity policies towards the NG-RAN, based on the activation of the integrity
protection and/or confidentiality in the air interface between the UE and the
Base Station. These security policies can be part of the subscriber informa-
tion stored in the UDR and retrieved by the UDM function or, configured
locally. Since currently UP security policies are globally based, control by lo-
cal policies in the SMF may seem a priori sufficient. However, a new approach
is necessary to address QoS related to critical security features required by
pipelines addressing mission-critical scenarios and requiring different and cus-
tomized security levels. For instance, it can be needed to selectively activate

135

Chapter 8 Assurance Aware Deployment infrastructures

different integrity protections or specific security measures for specific user-
s/pipelines or network slices. The orchestrator should be capable of config-
uring the available 5G policies enabling selective security/privacy features
needed. Note that in case the telco offers already services with adequate
security features, user-specific policies are not requested to be asked.

8.6 Walkthrough Example

In the following, we describe a specific vertical of the generic scenario in
Section 8.3 aimed at supporting a wet lab implementing a data analytics
pipeline to identify novel therapeutic targets and highlight pharmacological
networks in humanized experimental models.

Let’s start describing the generic pipeline description to be fed into our or-
chestration building. The initial task of the pipeline is a digitalisation task
focused on nucleotide sequencing from both mouse and human mRNA ex-
tracted from tissue (task t1). These data have to be preprocessed and cleaned
before being further analysed (task t2). The collected data have to be then
processed in different ways by i) spectral detection (task t3), ii) peptide search
(task t4), iii) peptide indexing (task t5) and iv) protein inference (task t6)
focused on protein quantification. The results of this pipeline should be
provided back to the wet lab with the highest possible throughput and the
entire pipeline have to be secured for data confidentiality (task t7). The
meta orchestration modelling the above pipeline can be defined as follows
O = xv1, v2, v‘, v3, v4, v5, v6, v‘, v7y. Let’s consider QoS requirements r1 =
Confidentiality and r2 = High throughput and the constraint c1 = on premises
annotated on the digitalisation vertex (vc11) of the meta orchestration mod-
elling the fact that the acquisition is based on a physical machine (Nextgen
550 Illumina). Let’s also consider as a landing continuum architecture the
one in Figure 8.1.

Our orchestrator builder in Definition 8.5.2 generates four orchestrations
made of executable tasks implementing the pipeline as depicted in Figure 8.2
addressing r1, r2 and c1. More specifically the first orchestration is for the
on-premises edge node, according to the constraint c1, and is based on digi-
talisation task t1 only. The second orchestration resides in the MEC and is
based on cleaning task t2 only. The third orchestration is made of a set of

136

8.6 Walkthrough Example

parallel tasks (tasks t3, t4, t5, t6) that are deployed on multiple cloud nodes to
support performance requirement r1. The fourth orchestration resides again
on the MEC and is based on visualization task t7 only.

These orchestrations are merged by some communication-oriented tasks: i) tð1
to ingest data from the physical machine; ii) tñ1 and tð2 to establish the com-
munication between the Edge premises orchestration and the 5G MEC one;
iii) tñ2 and tð‘ to establish the communication between the 5G orchestration
and the Cloud one where tasks (from t3 to t6) are executed in parallel; iv) tñ‘
and tð7 to establish the communication providing back to the wet lab the
results of the analysis via 5G; v) tñ7 to provide the hook to access the results
visualization. Such communication-oriented tasks are configured to provide
secure communication channel to address r2.

Figure 8.2 shows the wet lab scenario deployed on our reference architecture.
We note that the 5G node has two MEC applications that refer to the two
different orchestration deployed one for t2 and one for t7.

We also note that orchestration t7 is deployed on MEC to support requirement
r1 providing a better response time.

Cloud Node

ECloud Deployment

App

Edge Node

EEdge Deployment

App

5G Node

MEP

MEC MEC

t1 t2 t4

t3

t5

t6

t7

t1⇒t1⇐ t2⇐ t⊕⇐ t⊕⇒t2⇒

t7⇐t7⇒

Figure 8.2: The wet lab pipeline deployed on our 5G-enabled Edge continuum
architecture.

137

Chapter 8 Assurance Aware Deployment infrastructures

8.6.1 5G Orchestration Deployment

tosca_definitions_version: tosca_simple_yaml_1_3
description: An example VNFD template.
metadata:

template_name: example_vnfd_template
topology_template:

node_template:
VDU1:

type: tosca.nodes.nfv.VDU.Tacker
properties:

image: cirros -0.5.2-x86_64-disk
availability_zone: central
flavor: m1.tiny

actions:
failure: restart

CP1:
type: tosca.nodes.nfv.CP.Tacker
properties:

mac_address: fa:40:08:a0:de:0a
ip_address: 10.10.1.14
type: vnic
anti_spoofing_protection: false
management: true
order: 0
security_groups:

- secgroup1
- secgroup2

requirements:
- virtualLink:

node: VL1
- virtualBinding:

node: VDU1
VL1:

type: tosca.nodes.nfv.VL
properties:

vendor: Tacker
network_name: net-01

Figure 8.3: VNFD file example (an extract) for a simple deployment on MEC
suitable for the orchestration involving t2.

In the following we describe the deployment of the t2 orchestration (i.e., the
orchestration involving t2) on the 5G MEC. The 5G system supports deploy-
ment techniques such as VNF to host services in its core network, extending
its functionalities. VNF uses VNFD to define the configuration of a deploy-

138

8.6 Walkthrough Example

virtualComputeDescriptor:
virtualComputeDescId: orechestrator.node.comp
logicalNode:

- id: orechestrator.node.comp.req
logicalNodeRequirementDetail:

cpu: 4
memory: 10G

mcioConstraintParams:
- localAntiAffinityZone

virtualStorageDescriptor:
- id: orechestrator -storage

typeOfStorage: FILE
fileStorageData:

sizeOfStorage: 10 # GB
fileSystemProtocol: NFS
intVirtualLinkDes: orechestrator -nfs

- id: cirros-image
typeOfStorage: BLOCK
blockStorageData:

sizeOfStorage: 2 # GB
swImageDesc: cirros -0.5.2-x86_64-disk

selectedMECCHostInfo:
- hostName: nodes.mec.1

hostId:
locationConstraints:

- countryCode: IT
vimConnectionInfo:

id: orechestrator.vim.1
vimType: BRIDGE

Figure 8.4: AppD file example (an extract) suitable for the orchestration in-
volving t2.

ment, describing the resources to allocate and the system image to use. VNFs
handles a complete virtualised system, automatizing the production cycle of
applications and services running in a controlled environment. Figure 8.3
shows an example VNFD file to deploy a CirrOS virtual machine as a VNF
to work as MEP for the t2 orchestrator.

The process of deployment t2 orchestration is made of the following steps
involving the 5G services as in Figure 4.3:

• The OSS requests the instantiation of an application (i.e., our t2 orches-
tration) to the MEAO including a configuration in the AppD format

139

Chapter 8 Assurance Aware Deployment infrastructures

(an example of the AppD configuration is shown in Figure 8.4);

• The MEAO checks the configuration and authorization of the request.
Then it selects an edge host that matches the requirements and for-
wards the request to its Mobile Edge Platform Manager (MEPM);

• The MEPM concretizes the configuration, introducing the necessary
traffic, DNS and service exposure, and dependency rules, and requests
the VIM to allocate the necessary resources and start the application;

• Once the VIM has confirmed that the application is running, the MEP
activates the network configuration rules by allowing it to communicate
with the data network through Mp2. When the running services are
confirmed to be healthy, their availability is reported to the rest of the
cluster and exposed through Mp1 to the rest of MEC services.

• The chain of requests returns from the MEP to the MEPM and then
to the MEAO, reporting information about the allocated resources;

• Finally, the MEAO returns the results of the instantiation process to
the OSS, including an identifier to the application instance.

8.7 Discussion

There is an increasing need for solutions capable of deploying analytics pipelines
in continuum Edge scenarios unlocking the full potential of Edge computa-
tion. The adoption of next-generation 5G networks will allow having Edge
computation capabilities in the periphery leading to broader applications and
fostering the distribution of micro Edge nodes embedded in the telco network.
Edge computation can provide several benefits, such as low latency, high
bandwidth, context awareness, and privacy preservation. In this chapter, we
present an orchestration-based solution for handling advanced data-intensive
pipeline deployment in the 5G-enabled Edge continuum. Our solution aims
to provide an efficient and effective way of deploying analytics pipelines in
the 5G-enabled Edge continuum, taking into account the requirements and
preferences of the users, the characteristics and constraints of the resources,
and the dynamics and uncertainties of the environment.

140

Chapter 9

Assurance Aware
Deployment in E2C
Continuum

Cloud-native technologies are drastically improving the way infrastructure
resources are allocated and applications are deployed. For developers, the
ability to encapsulate applications in containers or virtual machines simpli-
fies the development process, making it independent of and transparent to
deployment. Containerization allows also to build applications following the
distributed paradigm, where components, mainly services, are chained into
complex compositions.

The advent of Edge Computing has changed the way a service composition
can be deployed, allowing for instance to better support real-time applications
via low latency [89] and in general a better placement of services to fulfil
specific QoS requests [90, 91]. Despite being physically separated from the
Cloud, the Edge heavily depends on it to execute resource-hungry tasks,
since computational power available on Edge nodes decreases the farthest
they are from the Cloud. This dependency has been emphasized in recent
times, when the momentum gained by ML pointed out the computational
limitations of Edge Computing and consequently stimulated the development
of distributed approaches relying on both Cloud and Edge, such as Federated
Learning (FL) [92].

141

Chapter 9 Assurance Aware Deployment in E2C Continuum

In such context, a new computational paradigm is taking hold, merging both
Cloud and Edge in a Continuum. E2C Continuum combines the strengths
from both platforms in terms of scalability, flexibility, and mobility, to name
but a few, and delivers a wide infrastructure where applications can be seam-
lessly deployed across the entire network [93]. The aim of the Continuum is
to decouple the management of heterogeneous resources and the deployment
configuration from the execution of the specific application. This decoupling
can be achieved by abstracting the deployment infrastructure, allowing the
developer to simply define applications in terms of functional capabilities (i.e.,
a workflow of services) and QoS properties to hold (e.g., confidentiality, avail-
ability, latency, etc.). In our approach we assume that most of such NFPs be
guaranteed thanks to suitable deployment configurations, without the need
of modifying the application logic. For instance, considering an application
on the continuum made of a pipeline of services focused on collecting sensible
data to build a specific model. Low latency and privacy properties can be
granted for the data gathering services via on premises or edge deployment,
while high computational power can be guaranteed for the data modelling
services via cloud deployment. We note that in a Cloud-only or Edge-only
scenario, we may not benefit from all the properties without requiring modifi-
cation at application logic, whereas in the Continuum, the same requirements
may be fulfilled by specific deployment recipes.

Notwithstanding the potentialities offered by the E2C Continuum, the re-
search into how to fully exploit its potential is still in its infancy. Some
solutions have been proposed in the field of serverless computation, where
stateless applications are executed in modern FaaS platforms [94–96]. In
FaaS, frameworks are developed to select the best platform according to some
metrics, such as cost. However, stateless applications focus only on resource
allocation (i.e., CPU, memory and bandwidth) and represent only a portion
of a much wider and complex range of E2C Continuum applications requir-
ing much more complex properties to hold. For instance, the metrics defined
for the selection of the optimal FaaS platform cannot be used to cope with
latency, confidentiality and authentication [94, 95, 97, 98]. In short, we still
lack a NFP-aware approach to deploy applications in the E2C Continuum,
since existing solutions work mainly for serverless frameworks and fail short
to handle pipelines of services and complex properties.

This chapter aims to address the above gap by defining a new methodology
for service deployment in the E2C Continuum. We extended the graph-based
representation of service composition in [27] to model also the Continuum

142

9.1 Scenario, Requirements and Architecture

deployment environment peculiarities. We then build a matching function
capable to map each service in the composition to a facility of the Continuum,
so that all the required properties can be fulfilled. This mapping is finally
used to generate and deliver deployment recipes specific for each Continuum
facility.

The contribution of this paper is fourfold: i) a new notion of E2C Contin-
uum involving both 5G Telco Edge node and on-premises Edge node (Sec-
tion 9.1), ii) a novel methodology for QoS-aware deployment of composed
services in the E2C Continuum (Section 9.2), iii) a suitable Architecture
implementing the methodology and generating executable recipes for the de-
ployment, and iv) preliminary experimental evaluation showing the feasibility
(Section 11.5).

9.1 Scenario, Requirements and Architecture

Our reference scenario considers i) a client that wants to deploy its workflow
of services si specifying QoS requirements and constraints to be satisfied on
the E2C Continuum; ii) CSPs offering deployment facilities fi for third-party
services on the E2C Continuum; iii) facilities offering specific capabilities ci
to satisfy QoS requirements and constraints. In this work, we consider an
advanced E2C Continuum where Edge nodes can be: i) telco nodes (i.e., 5G
MEC) based on an agreement between the CSP and a given telco operator of-
fering their core network capabilities to be part of the CSPs Continuum (e.g.,
AWS Wavelength); ii) on-premises nodes based on the deployment facilities
on the client’s premises enabled by the CSP for services deployment (e.g.,
using AWS Greengrass). When the client asks to deploy a given workflow
of services, the CSP matches the service workflow, QoS and constraints with
the capabilities and peculiarities of its E2C Continuum deployment facilities
associated to the specific client in order to find all the feasible deployment
configurations. Among them the CSP selects the configuration to be deployed
according to internal policies, such as considering Cloud as the preferred ser-
vice deployment due to lower operating costs. For instance, in case of two
candidate configurations, one using 5G and Cloud facilities and another using
on-premises and Cloud facilities, the latter would be selected. The CSP then
generates the deployment recipe for the selected configuration and executes
the deployment on the continuum.

143

Chapter 9 Assurance Aware Deployment in E2C Continuum

Example 9.1.1 shows the scenario used in the rest of the chapter to present
our methodology.

Example 9.1.1 (The Scenario). Let us assume that a client wants to deploy a
ML workflow made of 4 sequential services: s1 gathering data, s2 normalizing
data, s3 generating a model out of the collected data (e.g., training a decision
tree), and s4 saving the model for further usage (e.g., for prediction). Let us
assume that the client requires that data accessed by s1 should be protected
for confidentiality and the model generated by s4 should be protected from
tampering by controlling its integrity. Let us assume that the client expresses
a constraint on the communication links between s1 and s2 and between s2
and s3, which must carry large volumes of row data, requiring a bandwidth
of at least 200 Mbit/s. Let us also assume the client has a contract with
the CSP for Continuum facilities including on-premises machine f1, 5G Edge
node f2 in the proximity of its premises, and Cloud node f3. The CSP ensures
some capabilities (c) on the facilities and the network links connecting them.
In particular, f1 ensures confidentiality at rest via isolation of the storage
from the direct control of CSP (c1), and f3 provides a service (sI) ensuring
data integrity at rest (c2). In addition, all the internal links, that is the links
between two services deployed on the same facility, have infinite bandwidth
(c3), while the 5G link between f1 and f2 provide at least a 500 Mbit/s
bandwidth (c4).

9.1.1 Edge-continuum deployment Requirements

In order to support the Scenario in Section 9.1, the CSP should be empowered
with an advanced deployment architecture addressing the following require-
ments:

• R1 Continuum-readiness: it should seamlessly deploy services on
all the different Continuum premises.

• R2 Property-driven: it should be driven by QoS properties and
constrains expressed by the client.

• R3 Technology agnostic: it should be capable to handle hetero-
geneous deployment facilities regardless the underlying virtualisation
technology.

144

9.1 Scenario, Requirements and Architecture

• R4 Comprehensive model: it should provide a way as general as
possible to represent pipelines and facilities, without limiting the choice
in topology and data flow.

• R5 Interoperability: it should be able to interact with CSP facilities
through software hooks.

• R6 Context adaptability: it should perform deployment life-cycle
management by re-deploying services when changes in the environment
occur.

9.1.2 Deployment Architecture

To support the scenario in Section 9.1 and ensure the requirements in Sec-
tion 9.1.1, we propose a deployment architecture capable of guaranteeing a
seamless QoS and constraints preserving execution of a given service workflow
in the Continuum.

Figure 9.1 schematizes our system architecture made of i) a Deployment
Engine service that targets the deployment facilities through Deployment
Agents, and ii) a set of Deployment Facilities of different nature, including
Cloud, Telco-Edge and on-premises nodes R1. The client interfaces with the
deployment engine through Deployment API providing the service workflow
to be deployed and the QoS/constraints specification in a machine-readable
format R2 and R4. The Deployer Solver chooses the most appropriate de-
ployment configuration interacting with the Deployment Controller which is
in charge of i) interrogating Deployment Facilities on their capabilities and
ii) delivering the deployment recipes, using the Deployment Agents.

The Deployment Agents are responsible to build the deployment continuum
across the facilities by driving the service deployment R3. In order to support
QoS and constraint-aware integration, the CSP exposes to the Deployment
Agents suitable hooks to relevant resource (e.g., resource manager for de-
ployment) or services (e.g., services offering security features) constituting
their capabilities R5. For instance, the CSP can offer a hook to access non-
functional certificates (i.e., using certification scheme in [6,99]) proving some
capabilities or to invoke authentication services to support authentication
requirements.

145

Chapter 9 Assurance Aware Deployment in E2C Continuum

We note that in case of necessity (e.g., changes in the QoS or budget con-
straints) the given workflow can be re-deployed via re-executing the deploy-
ment matching with modified QoS and constraints R6. The re-deployment
can be also used to handle service migrations and in general changes occurring
post-deployment.

In the following we describe the peculiarities of the Continuum Deployment
Facilities in terms of architecture and capabilities.

Client

Deployment
API

Deployment
controller

Deployment
solver

Deployment Engine

Deployment
agent

Core Network
hooks

Telco-Edge

Deployment
agent PaaS hooks

SaaS hooks

IaaS hooks

Cloud

Deployment
agent Local hooks

On-premises

Deployment Facilities

Figure 9.1: Deployment Architecture for E2C Continuum.

9.1.3 Cloud

Cloud solutions offer to their users managed services and infrastructure with
scalable amount of resources. This allows users to deploy and integrate their

146

9.1 Scenario, Requirements and Architecture

services and products, relieving them from most management tasks. Gener-
ally, the control plane of the system is handled by a cloud provider, managing
the services life-cycle and ensuring their availability. The most common type
of deployment used in this context are based on containerized services or on
virtualised hosts.

The Cloud is the most flexible and powerful facility in the Continuum in
terms of offered capabilities. It supports non-functional QoS via PaaS or
IaaS services enabling them for the deployed services. It also partially sup-
ports constraints, for instance via resource scalability, network latency, high
bandwidth and connectivity supported by virtualised network and local and
distributed data centres. However, this support is normally very limited
due to the public internet connectivity and the shared environment used in
standard Cloud configurations. The Cloud currently suffers from the lack of
transparency impacting NFPs as privacy [79].

To support our deployment architecture the Cloud facility has to provide
hooks for i) resource management offering deployment and configuration of
containerized and/or virtualised services; ii) configurations of services rel-
evant to support given NFPs and iii) workflow-level networking manage-
ment.

9.1.4 Telco-Edge

Telco-Edge is an innovative Edge scenario enabled by 5G via integrating
mobile networking capabilities. The state-of-the-art solution for automated
service management in such systems is based on MEC [13,100–102]. MEC al-
lows integration of container and VM based services with the 5G core network,
mutually exposing their functionality. Differently from traditional Cloud fa-
cilities, i) the edge nodes are connected to 5G radio antennas, allowing fast
communication to and from mobile devices; ii) the service provisioning to mo-
bile devices is backed by unique device and user identification through IMEI
and Subscriber Identity Module (SIM) identifiers, supporting strong authen-
tication; iii) the telco edge nodes can be geographically closer to their users,
enabling new notion of data privacy by proximity, similarly to the notion
of privacy on-premises; and iv) the 5G standard allows users to allocate vir-
tual network slices, ensuring bandwidth availability and network performance
levels and latency.

147

Chapter 9 Assurance Aware Deployment in E2C Continuum

In addition, by adopting the Telco-Edge facilities i) the bandwidth between
the edge node and other network nodes is allocable; ii) the in-motion data can
be contained within the boundary of the telco network; and iii) additional
services (i.e., identification, network monitoring, authentication) for the users
connected through mobile network are available.

To support our deployment solution, the Telco-Edge facility have to offer
hooks on resource management and service configuration similarly to the
Cloud but also additional peculiar hooks for i) network-level user management
and authentication, and ii) network resource allocation (5G network slices)
for bandwidth and latency management via MEC.

9.1.5 On-premises

With on-premises we consider deployment facilities that are fully under the
control of the owner, but are equipped with CSP services to make them part
of the Continuum. They can be realized via VMs/containers or physical ma-
chines. Such facilities have normally stronger resource limitations compared
to Cloud or Edge environments, lacking scalability and elasticity or not pro-
viding specific hardware. On the contrary, they i) have strong properties
of high confidentiality and privacy, for instance ensuring that data cannot
physically leave the organization; ii) have the lowest latency to the devices
within the organization; and iii) leave the owners full control of the execution
environment.

In order to be part of the Continuum, on premises facilities should i) allow
our Deployment Agents to be executed in a supported deployment environ-
ment; ii) access to resources to arrange the service deployment; and iii) offer
hooks to handle resources for local deployment of services, connectivity to
the continuum and access to the relevant local services if needed. Normally,
on premises hooks have very restricted access to local services, data and de-
ployment resources making their use in the continuum very challenging.

148

9.2 Methodology

Deployment Matching

Annotated Service
Composition Template

Annotated Continuum
Facilities Graph

ClientCloud Service Provider

Deployment Recipes

E2C Continuum

annotates

generates defines

used by used by

generates

deployed on

Figure 9.2: Our Methodology.

9.2 Methodology

Figure 9.2 shows our methodology for the E2C Continuum scenario in Sec-
tion 9.1 based on our architecture in Figure 9.1. The client defines the service
composition workflow to be deployed and annotates it with QoS requirements
and constraints forming an Annotated Service Composition Template. The
service provider annotates its facilities with the relevant properties, indicates
hooks reachable by Deployment Agents, and produces the Annotated Deploy-
ment Facilities Graph. The client submits the request for deployment by
submitting the Service Composition Template via Deployment API to our
Deployment Engine. The Service Composition Template and the Annotated
Deployment Facilities Graph triggers the Deployment Matching process exe-
cuted by our Deployer Solver in order to generate the Deployment Recipes to
be used to deploy the given workflow of services on the E2C Continuum.

149

Chapter 9 Assurance Aware Deployment in E2C Continuum

9.2.1 Annotated Service Composition Template

A Service Composition Template is an abstract representation of the workflow
of services that a client wants to deploy. It describes the services, their
execution parameters and their interconnectivity configuration.

Definition 9.2.1 (Service Composition Template). A Service Composition
Template is a directed graph T = (S,E) where si P S are services constituting
the graph vertexes, and ei P E are graph edges modelling the interaction
between two services on both control and data plane. We note that, since
T = (S,E) is a directed graph, each edge represents a one-way interaction,
while a two-way communication requires a cycle made by two edges.

The Service Composition Template can be annotated with specific non-functional
requirements ri P R and constraints ki P K on resources. Following the no-
tation in [103], a requirement ri is a pair (r̂, Attr), where ri.r̂ is an abstract
requirement from a shared vocabulary of properties (e.g., confidentiality, in-
tegrity) and ri.Attr is a set of attributes specifying the low-level character-
istics that should be provided. The attribute values induce a hierarchy HR

of requirements (R,ĺR), where R is the set of requirements and ĺR is the
partial order. Similarly, a constraint ki P K is a tuple (k̂, V al, Op), where ki.k̂
is a resource (e.g., bandwidth, on-premises), ki.V al is the desired value and
ki.Op is the operation on that value. The resource determines what type of
value can be specified, such as integers, booleans, lists, and what operations
can be applied (e.g., =,ă,ě, P).

Definition 9.2.2 (Annotated Service Composition Template). Let T =
(S,E) be a Service Composition Template. The Annotated Service Com-
position Template TR,K is generated annotating vertexes and edges in the
template T = (S,E) with non-functional requirements ri P R and constraints
ki P K.

For instance, a security requirement ri = (Confidentiality, AES256) can be
associated to an edge (i.e., communication channel) ei, denoted as erii , while
a constraint kj = (On-premises, true, =) can be associated to a vertex (i.e.,
a service of the workflow) sj denoted as skjj indicating that the deployment
must be performed on an on-premises facility.

150

9.2 Methodology

Example 9.2.1 (Annotated Service Composition Template). Considering
the Example 9.1.1, we can represent the client service workflow as the anno-
tated template TR,K with the set of services S = [sr11 , s2, s3, s

r2
4] and the set

of edges E = [ek11 , e
k1
2 , e3]. The expressed requirements are r1 = (Confiden-

tiality,Isolation) and r2 = (Integrity,Rest), while the posed constraint is k1 =
(Bandwidth, 200, ě).

9.2.2 Annotated Continuum Facilities Graph

The CSP models its Continuum facilities for a given client as a Continuum
Facilities Graph.

Definition 9.2.3 (Continuum Facilities Graph). The Continuum Facilities
Graph is a directed graph G = (F,L) made of a vertex fi P F for each facility
provided by the CSP. L is the set of edges (here called links) li connecting
the vertices of the graph. Two vertices fi and fj can be connected by a link
li if facility fj is reachable from facility fi either through the open Internet
or a dedicated private channel.

Note that the Continuum Facilities Graph is directed and therefore each
link models a one-way connection. We can however express both two-way
and intra-node communication capabilities by defining cycles. In particular,
intra-node communication is represented as a cycle of length 1, i.e., a loop.

The Continuum Facilities Graph generated is then annotated with non-functional
capabilities ci P C. Capabilities represent a mechanism to support both NFPs
constraints such as confidentiality, latency, performance to name but a few.
A capability is defined as a tuple (ĉ, Spec,Op, Impl), where ci.ĉ is either a
property or a resource, ci.Spec is an attribute if ci.ĉ is a property, a value
otherwise, ci.Op is an operation on ci.Spec (if it is an attribute, V al is always
a =), and ci.Impl is a set, even empty, of key-value pairs describing how the
facility implements the capability. The annotated data life-cycle is managed
by the service providers, possibly using certification-based solutions. The se-
lection and implementation of the associated methodology is out of the scope
of this work.

Definition 9.2.4 (Annotated Continuum Facilities Graph). Let G = (F,L)

151

Chapter 9 Assurance Aware Deployment in E2C Continuum

be a Continuum Facilities Graph. The Annotated Continuum Facilities Graph
GC is generated annotating vertexes and edges in the Continuum Facilities
Graph G = (F,L) with the capabilities ci P C (e.g., latency, bandwidth,
resources).

For instance, a security capability ci = (Channel_encryption, AES256, =)
can be associated to a link li denoted as lcii , while a capability cj = (Edge,
true, =) can be associated to a vertex (i.e., a facility of the ISP) fj denoted
as frjj .

Together, Annotated Service Composition Template and Annotated Contin-
uum Facilities Graph provide a general framework to describe most kind of
pipeline topologies in the Continuum, addressing R4.

Example 9.2.2 (Annotated Continuum Facilities Graph). Considering the
Example 9.1.1, we can represent the CSP facilities as the annotated graph
GC with the set of facilities F = [f c11 , f2, f

c2
3] and the set of links L =

[lc31 , l
c4
2 , l

c3
3 , l4, l5, l6, l

c3
7]. The provided capabilities are c1 = (Confidentiality,

Isolation, =, []), c2 = (Integrity, Rest, =, [service: sI; mode: interception]),
c3 = (Bandwidth, +8, =, []) and c4 = (Bandwidth, 500, ě, []).

9.2.3 Deployment matching

The deployment matching process searches for the most suitable solution for
the QoS-aware deployment of a given service workflow on the Continuum.
It takes as input the Annotated Continuum Facilities Graph GC and the
Annotated Service Composition Template TR,K , generates a set of suitable
deployment solutions M and among them finds the one M̂ that better satisfies
a given CSP policy (e.g., the lowest operational cost).

The set of suitable deployment solutions M is defined on (S P TR,K) ˆ (F P

GC) so that: i) for every edge ei P E between any two vertices si and sj P S
there is a link li P L between the matching vertices fi and fj P F ; ii) for
every pair (si, fi) in M , the capabilities ci of fi satisfy the requirements ri
and the constraints ki of si; iii) for every edge ei between any two vertices
si and sj P S, the capabilities ci of li between the matching vertices fi and
fj P F satisfy the requirements ri and the constraints ki of ei. If the set

152

9.2 Methodology

Algorithm 3 Pseudocode of our deployment matching exhaustive algorithm.
procedure matching(S, F)

matches = H

Ź Iterate services permutations
for service_perm in perm(S) do

Ź Services partitioning in |F | facilities
for part in partitions(service_perm, |F |) do

Ź Test if all requirements are met
valid Ð true
for ri in R do

if ri(S, F, part) == false then
valid Ð false
break

if valid then
Ź Match found
matches = matchesY tpartu

return matches

of suitable deployment solutions M is empty, it means that the deployment
of the service workflow cannot take place on the given continuum, given the
QoS requirements and constraints. If the set of suitable deployment solutions
M is not empty, the deployment matching orders them according to the CSP
policy and selects the first one in the order.

Given the set of deployment solutions M , if the CSP policy refers to oper-
ational cost reduction only, a solution like the one in [104] can be adopted.
We will investigate the impact of more articulated CSP policies as well as
the adoption of an optimization approach for finding the suitable deployment
solution and contemporaneously addressing such CSP policy in our future
works.

Algorithm 3 shows the pseudocode of our matching function. The algorithm
i) iterates over all the permutations of services altering the elements starting
from the beginning of the list; ii) for each permutation it iterates on its
partitions starting from the beginning of the list, thus leaving the largest
partitions containing the most preferred facilities; iii) for each permutation
it checks whether all requirements are met, if that is the case it adds it to
the results partition otherwise it breaks to the inner for loop; iv) finally it

153

Chapter 9 Assurance Aware Deployment in E2C Continuum

returns the set of results.

sr1
1

s2

s3

sr2
4

TR

ek1
1

ek1
2

e3

fc1
1

f2

fc2
3

GC

lc3
1

lc4
2

lc3
3

l4

l5 l6
lc3
7

m1

m2

m3

m4

(a) (b)

Figure 9.3: Annotated Deployment Graphs including (a) Annotated Service
Composition Template and (b) Annotated Continuum Facilities
Graph, with the resulting matching.

Example 9.2.3 (Deployment matching). Let us consider the scenario in
Example 9.1.1, the Annotated Template TR,K and the Annotated Graph
GC , in Example 9.2.1 and Example 9.2.2 respectively. Let us now apply our
matching function in Algorithm 3 to the services in TR,K and the facilities
in GC retrieving a set of possible matching M . Figure 9.3 shows one of
the possible solution in M = tm1,m2,m3,m4u, where m1 = (s1, f1), m2 =
(s2, f2), m3 = (s3, f2), and m4 = (s4, f3). Here, s1 is matched with f1 since
it is the only facility ensuring confidentiality. Similarly, s4 is matched with f3
since it is the only facility providing a way to check integrity. Lastly, s2 and
s3 are matched with f2 to provide large bandwidth between the first three
services.

154

9.2 Methodology

9.2.4 Deployment Recipes

The purpose of the above deployment matching is to assign each service to
a facility in such a way that all requirements (i.e., QoS and constraints) can
be fulfilled and the CSP internal policy satisfied. However, a mere assign-
ment is not always enough to enforce the desired properties. For instance,
low latency can be achieved by simply assigning services to the physically
closest facility, while, on the contrary, communication channel confidentiality
requires configuring a component or service to handle message encryption
and decryption. To address the above deployment challenges, our method-
ology enriches traditional deployment recipes with hooks metadata. This
metadata is consumed by our Deployment Agents to enable relevant proper-
ties configuring or embedding facility’s services in the service workflow to be
deployed.

Recipes are generated for each service of the workflow in M̂ and contain
the operational instructions for the deployment of both the service and the
supporting facility’s components/services. In particular, a recipe consists of
three parts: i) the deployment configuration of the service, including the im-
age to be used and resources to be allocated; ii) a description of the support
components/services to be integrated and their parameters (e.g., for an au-
thentication component it includes the list of user credentials); iii) modality
of integration (i.e., none, interception or wrapper).

Example 9.2.4 (Deployment Recipe). Considering the selected matching
M̂ in Example 9.2.3, according to our methodology the relative deployment
recipes are generated for all the services si P M̂ . For simplicity let us focus on
s4 recipe only. Figure 9.4 shows an excerpt of the s4 recipe provided to the
deployment agent in f3, along with the final deployment graph for M̂ . Ac-
cording to the recipe, the agent, in order to guarantee integrity, has to deploy
an additional facility’s service (service: sI) that intercepts (mode: intercep-
tion) incoming data from s3, computes and adds to data a cryptographic
checksum, and delivers it to s4 for storing.

We note that details on how the recipes are generated out of the given selected
matching M̂ is out of the scope for this work. We will further investigate this
topic in our future works.

155

Chapter 9 Assurance Aware Deployment in E2C Continuum

facility:
name: f3
services:
- name: s4

kubernetes_template:
apiVersion: apps/v1
kind: Deployment
metadata:

name: s4
spec:

replicas: 1
template:

spec:
containers:
- name: s4

image: local.registry/s4
ports:
- containerPort: 80

capabilities:
- property: integrity

attribute: rest
operation: "="
implementation:

service: sI
mode: interception

s1

s2

s3

sI

s4

f1

f2

f3

Figure 9.4: Deployment Recipe for facility f3.

156

Chapter 10

Experimental scenario:
MIND Foods HUB

In order to enhance crop plant varieties and generate favourable traits, such as
increased yield, improved resistance to environmental stress, and heightened
levels of health-promoting compounds, controlled (indoor) and field-based
phenotyping experiments are conducted on both small and large scales. Phe-
notyping involves measuring various plant parameters and features through
different methods. The ultimate goal is to identify and describe individuals
that showcase desirable traits, which arise from the positive interplay between
their genetic make-up and environmental conditions, as well as management
factors applied during their growth. The significant advancements of recent
decades in sensing, automation, and information technologies have revealed
the era of “high-throughput” phenotyping through the creation of automated
platforms, which are based on indoor growth-chambers or climate-controlled
greenhouses. These platforms allow the monitoring of hundreds or thousands
of potted plants with specific sensors. In recent years, field phenotyping has
expanded significantly, incorporating larger scale experiments using mobile
platforms to conduct non-destructive, traceable, high-spatial/time resolution
measurements of plant features throughout the entire growth season, employ-
ing multiple sensors. The requirements for accuracy, frequency, repeatability
and in-depth analysis of the vast amount of data measured make field phe-
notyping an ideal domain for the application of robotics, enabling highly
efficient (semi-) autonomous data collection. Big Data engines handle data

157

Chapter 10 Experimental scenario: MIND Foods HUB

management, integration with external sources, ground truth annotation, au-
tomated analysis and job pipelining, while providing intuitive interfaces to
retrieve the extracted information [105]. Integration with 5G-based networks
and services enables efficient handling of massive amounts of data from IoT
devices [27], quickly delivering contextual information to the user in the field.
It is important to note that the ongoing impact of these technologies is not
limited to research infrastructures, but is becoming increasingly relevant to
crop management practice. Indeed, with the adoption of Precision Agricul-
ture (PA) technologies to monitor the spatial and temporal variability of crop
development within fields, to model the site- and time-specific needs of the
crop, and to precisely adjust the variable distribution of inputs (seeds, wa-
ter, fertilisers, protective treatments, etc.), this data and automation-driven
implementation is currently taking agriculture to a new level, often referred
to as Smart Agriculture.

The contribution of this work is threefold. First, we propose a novel 5G-
enabled Big Data platform for IoT. Second, we present a vertical implemen-
tation for addressing Smart Agricultural needs. Third, we present preliminary
experimental evaluation in a real scenario of the MIND Foods Hub project.
The rest of the chapter is organized as follows: Section 10.1 summarizes
the background knowledge for machine-assisted phenotyping and big data
platforms. Section 10.2 describes the primary components of our system.
Section 10.3 details our practical scenario and its specifications. Section 11.6
reports the preliminary results achieved by our implementation. Section 10.4
gives our conclusions.

10.1 Background and motivation

The availability of reliable data collected along the growing season has always
been considered of paramount importance for efficient and sustainable agri-
cultural production. Over the last two decades, PA [106] has been gradually
established as a reference approach to optimally manage the intra-field vari-
ability of crop needs and to modulate accordingly the farming practice and
the distribution of inputs in different field zones. Today, PA is a set of sensing
and actuation technologies that equip machinery and farm equipment, mod-
elling tools linked to remote data sources, digital decision support tools, etc.,
used as an integrated system for planning the use of resources and managing

158

10.1 Background and motivation

farm operations. At the basis of PA are sensors (mostly optical) mounted
on agricultural machinery that travels the fields during normal operations
or for scouting purposes at specific times, or mounted on Unmanned Aerial
Vehicless (UAVs) or satellites to monitor the spatial and temporal variabil-
ity of crop growth, water and nutrient status, health and competition from
weeds. The data collected is fed into modelling and computational tools to
produce prescription maps for subsequent management operations, which can
be modulated site-specifically by PA equipment. Plant phenotyping uses sim-
ilar or more advanced sensor technology to measure relevant characteristics
with greater temporal and spatial resolution, even at the level of individual
plants or organs. By far the most commonly used measurement techniques are
based on optical sensing because they are non-destructive and can therefore
be repeated without disturbing plant growth, and because many physical and
physiological characteristics of plants strongly influence their optical proper-
ties, which can then be used as reliable proxy parameters. For instance, RGB
cameras mounted in a top-view configuration along with associated segmenta-
tion algorithms can characterise rates and synchronicity of seed germination
or measure growth rates of seedlings in the first developmental stage [107].
Similarly, specific phenological stages can be identified by counting or detect-
ing outer organs such as ears, fruits, and flowers. Plant dimensions and outer
foliage size and structure can be assessed using 3D imagery, such as stereo
or time-of-flight cameras, or via Laser Imaging Detection and Ranging (LI-
DAR) systems [108]. By taking repeated measurements at various intervals,
variations in plant growth rates may be determined. From 3D point clouds of
a plant, some physiological morpho-geometric parameters can be estimated,
such as total leaf surface, plant elongation, and number of leaves [109–113].
Thermal infrared images can be used to assess water availability and stress in
plants, as tissue temperature is controlled by the transpiration rate through
the stomata of leaves. Photosynthetic efficiency can be used as an indicator
of plant health and vitality. Handheld specialized devices are commonly used
to measure chlorophyll fluorescence, although automation for field phenotyp-
ing still poses technical challenges. Further insight can be gained through
multi-spectral and hyper-spectral cameras, which are capable of obtaining
images within narrow, specific spectral regions associated with nutrient sta-
tus (in particular nitrogen) and pathogen infections [114]. Interestingly, this
method can also estimate the levels of desirable compounds (such as those
with high nutritional or health-protecting qualities) in plant tissues following
specific management treatments. It may also be employed to evaluate the
effectiveness of strategies aimed at reducing the accumulation of undesired
compounds in the plant tissues.

159

Chapter 10 Experimental scenario: MIND Foods HUB

Big data systems are designed to store and manage large amounts of data in
a variety of forms, such as text, structured datasets or blobs of binary data
such as images and videos. While the raw data remains critical, the extracted
information represents the true value to an organisation or business. Con-
sequently, the implementation of a fitting infrastructure to analyse, convert
and leverage the data becomes necessary. Therefore, the designed system
aims to not only store and retrieve use cases, but also to consistently trans-
form incoming data through analysis pipelines. The system also necessitates
a dat a distribution solution whereby subscribers interested in obtaining the
most recent collected samples can opt for particular distribution channels and
efficiently obtain dataset updates as soon as they are available.

The need for quality assurance in Big Data solutions is driven by the com-
plexity and variety of analysis requirements, as well as the demand for easier
debugging. This applies to both user and infrastructural levels. Techniques
for Big Data assurance are used to ensure the accuracy of pipeline jobs and the
suitability of the underlying infrastructure, as explained in previous Chap-
ters 2, 3, 4, 5, 6, 8, 9 and 7.

10.2 System service components

In this section, we describe the architecture of our Big Data Engine platform.
Figure 10.1 is a representation of the engine components and their interaction
with external systems and users

Scientific
Applications

Users

Big Data Engine

Storage

PipelineAnalysis

API

Data sources

IoT
Platform

Sensors

Figure 10.1: Big Data Engine components and interactions.

The primary use cases for a Big Data Engine are the following: i) storing
large quantities of data in a distributed and searchable manner; ii) providing

160

10.2 System service components

an efficient execution environment for analysis and transformation of the
data; iii) enabling users to automate and schedule repetitive tasks through
a pipelining solution. In our microservice-oriented architecture, we use use
specialized components for each of these scenarios in order to decouple their
functionalities.

Storage The storage feature is handled by a data lake solution. In par-
ticular, we are interested in horizontal scalability of the storage space, data
replication capabilities and ease of access through a restful API.

Analysis The execution feature is provided by a parallel execution engine.
This solution automatically handles the tasks in input, providing them the
necessary libraries, configurations and secure access to the data. Such exe-
cution platforms also provide frameworks to easily develop applications that
can benefit from parallel execution, splitting the load on multiple execution
nodes in the same cluster.

Pipeline The automation and scheduling of tasks is a feature integrated
in a pipeline execution platform. These platforms provide frameworks and
web services to create, configure and execute pipelines of tasks, managing
their environment and possible failures. It is paramount that the chosen
platform integrates with the execution engine, leveraging its parallel execution
capabilities. The pipeline platform also provides an API to schedule and
monitor the execution of jobs.

API Data ingestion and query is managed by a unified API that integrates
with the previously mentioned components. Fluxes of sensor data, such as
those provided by IoT platforms or smart sensors, are collected through the
API and stored in the data lake. Depending on the type of data, the API may
schedule the execution of analysis tasks though the pipeline service. The API
also provides users and external applications querying capabilities in order to
extract information form the processed data.

Data sources The Big Data Engine needs to support multiple data sources,
like IoT platforms and smart sensors. Depending on the source type and

161

Chapter 10 Experimental scenario: MIND Foods HUB

capabilities, the ingestion is implemented in a push or pull configuration.
In the first case, the data source sends the data to the engine through its
API, completely handling the update process. In the pull configuration, a
specialized collector agent is implemented to retrieve updates from the data
source, acting as an adapter between the two components.

Data consumers The consumers of the Big Data Engine are primarily
specialized users and scientific applications, that require access to the stored
data or to analysis results. They interface with the engine API in order to
query the storage component for the required information. Trusted users
may have access to the pipelining service, in order to develop the analysis or
transformation processes.

10.3 System implementation

The following sections present our practical scenario implementation, based
on MIND Foods Hub project1. In such project the Big Data Engine we
proposed acts as the central hub for collection, elaboration, analysis and
query of the agricultural data produced by on field sensors.

Figure 10.2 presents the major actors in the data cycle and their interactions.
Follows a description of each component of the system.

ICON
Platform

Rover
Platform

ICON Agent

Rover Agent

Data Lake

API Data Pipeline

Data
Analysis

Feature
Extraction

Model
Training

Query Engine

Ambient data

Cultivation data

Storage

Data Query RequestsUser Web
Interface

Figure 10.2: Robotic platform during a phenotyping mission.

1https://www.mindfoodshub.com

162

https://www.mindfoodshub.com

10.3 System implementation

10.3.1 Data lake services

The data lake is a composition of software services, hardware and configura-
tions aimed at ingesting, storing, analysing and querying large quantities of
data.

The identified use cases of the data lake deployment can be resumed in the
following points: i) continuous ingestion of structured data from the ICON
platform; ii) ingestion of raw sensor data from the rover platform; iii) anal-
ysis and transformation of the ingested data through a unified and scalable
solution; iv) user and script friendly interface for querying the stored data;
v) data query service low response time.

The adopted solution had to meet the following additional requirements:
i) the system has to constantly provide a high level of availability; ii) the
compute and storage capabilities of the data lake have to be easily scalable.

The implemented solution will be used for future big-data research projects,
therefore stability and replicability of the deployment are paramount. The
system has been deployed on commodity hardware provided and managed by
the SESAR lab of the Department of Computer Science of the University of
Milan.

Figure 10.3 contains an overview of the components adopted in the big-data
architecture and their interactions. A more in-depth description of each com-
ponent follows.

Storage service

The storage functionality has been achieved with the adoption of the Apache
Hadoop ecosystem, which offers a uniform and simple interface to a dis-
tributed filesystem. This solution allows for automatic replicas of data in a
distributed and scalable manner, ensuring availability, consistency and pri-
vacy. The service exposes its filesystem through multiple protocols, including
HDFS and a restful API, while providing access control functionalities.

163

Chapter 10 Experimental scenario: MIND Foods HUB

HDFS
Trino

REST API

WebHDFS

Pipeline triggers

MFH API

MFH Client
Rover agent

ICON agent

HDFS

Apache Yarn

HDFS

PySpark
Apache AirflowSpark node

Spark node
Spark node

Apache Hadoop

Name node

Data node
Data node

Data node

Figure 10.3: Software components of the data lake.

Data analysis framework

A data analysis framework provides useful tools to efficiently handle the data
lake’s stored data. These include (de-) serialization adapters, statistical and
ML models implementations and data visualization primitives. The chosen
solution is Apache Spark, for its effective and easy to use framework for
parallel big-data computing. Spark is a platform commonly used for efficient
and distributed computing in a large number of fields, including ML, statistics
and data analysis. The framework has first-class integration with Hadoop
and other storage solutions. It can be combined with several programming
languages, including Python, Scala and Java.

Data query service

The data query service acts as an interface to the stored data, exposing it
through an SQL interface. This component simplifies the integration of the

164

10.3 System implementation

data lake with external services and tools, acting as an intermediary layer
decoupling the query logic from the data lake implementation. The chosen
service is Trino, a distributed SQL query engine supporting Hadoop and a va-
riety of storage services and data formats. Trino exposes its features through
a restful API and a SQL dialect, easing the integration with other frame-
works. Trino’s speed is sufficient for the quasi-real-time use case identified
for the scenario, significantly outperforming other similar services.

Data pipelines service

The data pipeline service is the component that manages the execution of
transformation tasks on the stored data, providing scheduling, logging and
dependency management features. This service listens for triggering events,
such as web-hooks, timers or filesystem events, to execute a set of precon-
figured scripts describing the tasks. Each task can be partially ordered by
a dependency DAG and is monitored until its completion. One of the data
pipeline service primary functions is to provide a consistent environment of
libraries and configurations to ensure repeatability.

Data query API

The data lake functionalities are exposed through a GraphQL API, providing
a unified, self commenting and easy to integrate interface for other applica-
tions. The API is designed as a microservice, with scalability and ease of
deployment in mind, and acts as the primary endpoint for both data inges-
tion and retrieval. The service interacts with both the storage service and the
data query service. It can be used to trigger data pipelines, i.e. to elaborate
newly ingested data. The choice of using a GraphQL based implementation
permitted to have clear documentation tightly coupled with the source code
and to provide a consistent interface over the stored information.

10.3.2 Sensor platforms

Sensor platforms manage physical sensors, handling their measure processes
and exposing their functionalities to other software components. In our sce-

165

Chapter 10 Experimental scenario: MIND Foods HUB

nario, we consider two sensor platforms: i) a rover platform that measures
individual cultivation properties and ii) the TIM ICON platform that aggre-
gates several environmental sensors.

Rover platform

Figure 10.4: Robotic platform during a phenotyping mission.

The field carrier, shown in Fig. 10.4, is a customized robotic platform built
upon a commercial rover base (Infosolution Heavy Duty). The rover is
equipped with hyper-spectral, multi-spectral and depth cameras, support-
ing the measurement of a wide range of cultivation characteristics. An au-
tonomous guidance system allows the platform to automatically move to pre-
defined locations and automate the sampling operation through waypoint
based missions. Once all the data is collected, the rover sends it to the Big
Data engine API through a specialized adapter application.

ICON platform

The TIM ICON (IoT CONnectivity) platform is an integration middleware
aimed at the world of the Internet of Things, compliant with the oneM2M

166

10.3 System implementation

standard. ICON is a horizontal platform and does not address a specific
application area, but can be used in any vertical context in the IoT field,
such as the different scenarios of Smart City, Smart Home, Industry 4.0, etc.
It allows storing the data originated by the sensors and to share them with the
applications (store & share paradigm). To store data, ICON uses MariaDB
and MongoDB. ICON implements a common service layer (Figure 10.5)
to uniformly manage the different IoT devices, typically characterized by
a plethora of heterogeneous technologies. Applications that interact with
devices can thus have a standard interface, which abstracts the complexity of
the underlying world.

Application A Application CApplication B

Gateway

Application layer

Common service
layer

Network layer
Communication

network

IoT devices

Figure 10.5: ICON Architecture.

ICON makes available a south-bound interface to the world of sensors (to
publish data on the platform) and a northbound interface to the world of
applications (to access archived data). The ICON platform used in this work
is a lab instance available for integration activities involving external partners.
It is connected with the ICON production environment to get data from
deployed IoT devices connected to the commercial TIM NB-IoT network, as
described in Figure 10.6 where are also visible the different possibilities to
connect sensors to the south-bound interfaces. The oneM2M interfaces are
exposed as an HTTP restful API.

167

Chapter 10 Experimental scenario: MIND Foods HUB

Applications

ICON-LAB
API oneM2M
North-bound

API oneM2M
South-bound

Rest oneM2M

Rest oneM2M

UDP/COAP

ICON-ESE

Proprietary IoT
PlatformIoT Gateway NB-IoT/5G core

network

Adapter

Figure 10.6: Architecture with ICON-Lab and ICON-ESE (production) in-
stances.

The underling data model is based on the Container concept, a basic data
structure oneM2M-compliant that can contain data referred to any kind of
device. Containers can be nested and are made of Content Instances, a min-
imum set of meaningful data for a specific container.

IoT Sensors To monitor some environmental characteristics and climatic
conditions that affect growth and health of crops, IoT (Internet of Things)
sensors have been installed in cultivation areas. These sensors measure the
quantities to be monitored and are connected by cable to data-loggers that
collect the measured data at regular intervals and send them via the NB-IoT
network to ICON platform to be stored and then made available to appli-
cations. The data-loggers are equipped with autonomous power supply (via
battery and solar panel) and can be easily positioned on field. The sensors
were split up in three different data-loggers: i) in the greenhouse tunnel to
measure air temperature and humidity and soil temperature and tensiometric
values at two depth levels; ii) in the open field sensing soil temperature and
tensiometric values at two depth levels and iii) on field border to measure

168

10.3 System implementation

weather-related metrics (rain level, wind direction and speed, air humidity
and temperature, solar radiation and leaf wetness).

10.3.3 Data flow

In our system, we identify three types of data flows: i) data ingestion, where
information from external sources is collected, enriched and stored in the data
lake; ii) data transformation, where data that is stored in the data lake is used
as material for producing more refined or specialized information; iii) data
query, where the engine exports information on user request. In the following
sections we expand on the data-related tasks our system performs.

ICON data collection

A network service, named ICON agent, is tasked with the goal of collecting
the information exposed by the ICON platform. To do so, the application
implements a ONEM2M client and schedules queries to ICON at a fixed rate,
requesting recent updates on the exposed sensors. If a new state is found, the
data from ICON is parsed and checked for consistency. Each measurement is
enriched by including metadata about the sensor and a timestamp of measure.
Finally, the service records the measurements in the data lake by sending a
registration request to the API. Once the data is stored, data pipelines may
be triggered depending on the service configuration.

Rover data collection

The rover platform uses waypoint-based missions to gather data from the
cultivations: starting from a known position, it moves towards the next geo-
marker with a sufficiently small error and triggers the acquisition of data from
the on-board sensors. Such sensors produce two main type of data: plants’
2D images obtained from the multi-spectral and hyper-spectral cameras and
plants’ 3D point clouds. Images and point clouds are respectively encoded in
the PNG and PCD file formats. Once all the required data is collected, the
rover uses a network client, named Rover Agent, to send the files to the data
lake through its API.

169

Chapter 10 Experimental scenario: MIND Foods HUB

10.3.4 Data pipeline

The data pipeline is composed by a sequence of operations on the ingested
or stored data. An example pipeline may include an initial analysis step
that filters the data and checks for consistency; a feature extraction step that
enriches the data by inferring additional information, and a final step where
the data is fed as a training dataset to a regression model. Each of these
steps is monitored to ensure availability of the resources and integrity of the
obtained results. The produced data can then be published in the data lake
and made accessible through the data query API.

User data queries

The data lake provides a user level web interface and GraphQL API to al-
low both humans and applications to send structured requests and retrieve
information. The API converts the requests received into queries which are
submitted to the query engine, retrieves the results and returns them to the
users. The API can also be integrated with the ACL of the data lake, pro-
viding to each user a different level of access to the stored resources.

10.4 Discussion

The Big Data solution presented in this paper met the requirements exposed
in Section 10.3.1. The storage and transformation system proved to be stable
and easy to deploy on multiple machines, while being effective and versatile.
The data query component, Trino, has been successfully deployed and inte-
grated with the rest of the services. Moreover, it has demonstrated high and
consistent performance in the relevant use cases. The integration between the
data lake components has been implemented in the MFH API and pipeline
services by using the available restful APIs. The Spark framework provided
easy access to the Apache services ecosystem, while the GraphQL technology
significantly simplified the resources’ accessibility.

170

Chapter 11

Experimental results

This chapter presents the experiments conducted and findings obtained through-
out the various stages of this research. The subsequent sections outline the
experimental procedures implemented to authenticate the experimental se-
tups and methodologies presented in the previous chapters.

11.1 5G Simulator setup

Table 11.1: Setup of the virtual machines composing the Testbed.

Resource 5gcnl-oran 5gcnl-osm
Virtual CPUs 4 virtual cores 12 virtual cores
RAM 20 GB 32 GB
Storage (SSD) 250 GB 300 GB
OS Ubuntu 18.04 LTS Ubuntu 20.04 LTS
Juju v2.9.42 v2.9.42
K8S MicroK8s v1.26.4 MicroK8s v1.26.4
MicroStack None Ussuri

Our Testbed is composed by two different virtual machines. One contains
Aether and all its components (5gcnl-oran) while the second contains the
NFV orchestrator and the intent extension (5gcnl-osm). Table 11.1 describes

171

Chapter 11 Experimental results

the characteristics of the two virtual machines. On the 5gcnl-oran machine
we conducted infrastructure experiments to understand how Aether affects
the system in terms of CPU cores usage and memory allocation. We applied
the same test on the 5gcnl-osm machine, but we also decided to check if the
deployment of several network services degrades the performances of OSM
over time. Both Aether and OSM are deployed in Kubernetes clusters and to
be precise, the components are deployed in different Kubernetes namespaces.
On 5gcnl-oran we have three namespaces:

• omec: even if the name suggests the utilization of OMEC’s 4G EPC,
in this namespace are deployed all the 5G Core Network elements de-
veloped by Free5GC.

• sdran: in this namespace are deployed the RIC components described
in Section 4.3.1.

• aether-roc: in this namespace are deployed the ROC components de-
scribed in Section 4.3.1.

On 5gcnl-osm-20 we evaluated the performances of one namespace:

• osm: in this namespace are deployed the modules of the architecture
of ETSI OSM as described in Section 4.3.2.

Table 11.2 shows the network services deployed during the test on 5gcnl-osm-
20.

11.1.1 5gcnl-oran experiments

Methodology

To evaluate the performances of Aether, we developed a simple Python pro-
gram that collects metrics from Kubernetes metrics-server, an add-on that
provides resource utilization metrics for monitoring the cluster and its work-
loads. We opted to measure the number of CPU cores and the bytes of
memory allocated by the Pods in the three namespaces mentioned above.
The program performs the following operations:

172

11.1 5G Simulator setup

Table 11.2: List of all the network services deployed on OSM during the test.

Network Service Helm Chart Description
CoreDNS stable/coredns A DNS server
Joomla stable/joomla A Content Management System
Keycloak stable/keycloak An Open Source IAM solution
LAMP stable/lamp A bundle to develop web appli-

cations
Minecraft stable/minecraft The server of a videogame
MySQL stable/mysql A Data Base Management Sys-

tem
OAuth2 Proxy stable/oauth2-proxy A proxy to provide authentica-

tion
Open LDAP stable/openldap Lightweight Directory Access

Protocol
PHP My Admin stable/phpmyadmin A tool to manage MySQL
PostgreSQL stable/postgresql A Data Base Management Sys-

tem

1. It collects CPU and memory metrics every five seconds for ten minutes.

2. At the end of the test, the results are stored in a .csv file.

5gcnl-oran CPU performances

In this subsection we will show the results obtained from the analysis of the
plots regarding the CPU core consumption of Aether’s namespaces.

Namespace omec Figure 11.1 shows the number of CPU cores that every
5G Core Network component consumes once deployed. All 5G Core Network
components use around 0.23/0.24 CPU cores except for the UPF that con-
sumes 0.21 CPU cores. The two mongodb instances consume 0.26 CPU cores
and occupy the first positions. The other components consume less than 0.01
cores.

173

Chapter 11 Experimental results

Figure 11.1: Number of CPU cores utilized by the 5G Core Network compo-
nents.

Namespace sdran Figure 11.2 shows the number of CPU cores that every
5G RAN component utilizes once deployed. The CPU consumption of the 5G
RAN components is very low in the idle state; Pod onos-e2t and the Atomix
controller ’s elements consume less than 0.002 CPU cores while Pod onos-
consensus-store consumes 0.035 CPU cores. Other micro-onos components
use an amount of CPU cores that is around 0.001.

Figure 11.2: Number of CPU cores utilized by the 5G RAN components.

174

11.1 5G Simulator setup

Namespace aether-roc The consumption of CPU cores by the ROC con-
troller Pods is particularly low, as shown in Figure 11.3. The Pod onos-
consensus, consumes barely 0.0042 cores and occupies the first position. It is
followed by onos-consensus-store with 0.003 cores, by onos-topo with 0.0014
cores and aether-mock-exporter with 0.0013 cores. The remaining Pods con-
sume less than 0.001 cores.

Figure 11.3: Number of CPU cores utilized by the ROC.

5gcnl-oran memory performances

In this subsection we will show the results obtained from the analysis of the
plots regarding the memory allocation of Aether’s namespaces.

Namespace omec In Figure 11.4 we show the quantity of bytes that every
5G Core Network component allocates once deployed. In this case, it is worth
noting that most 5G Core Network components allocate a low quantity of
bytes of memory. They allocate approximately 10/20 MB of memory except
the UPF that allocates 206 MB of memory. Pod kafka occupies 425 MB of
memory while the two instances of mongodb 350/378 MB respectively. Pods
sd-core-zookeeper and mongodb-arbiter instead occupies 292 and 193 MB.
The other components allocate less than 10 MB each.

175

Chapter 11 Experimental results

Figure 11.4: Memory allocated by the 5G Core Network components.

Namespace sdran The memory allocation of the 5G RAN components
is shown in Figure 11.5. Again the Pod onos-consensus-store consumes the
most resources. It allocates 65 MB of memory followed by atomix-controller,
atomix-raft-storage-controller and onos-e2t Pods that consume 21.5, 19.8 and
25.8 MB respectively. The remaining components allocate less than 5 MB
each.

Figure 11.5: Memory allocated by the 5G RAN components.

176

11.1 5G Simulator setup

Namespace aether-roc The analysis of the memory occupation by the
ROC controller Pods in Figure 11.6 shows that onos-topo is the component
that allocates the most memory, with a value that is around 96 MB. Another
evident peak is generated by the Pod aether-roc-umbrella-grafana which al-
locates 66 MB. The other components present values below 40 MB and in
some cases even below 10 MB.

Figure 11.6: Memory allocated by the ROC.

11.1.2 5gcnl-osm-20 experiments

Methodology

To evaluate the performances of OSM, we re-designed the Python program
used for the collection of the metrics on the 5gcnl-oran machine. It always
collects metrics using the metrics-server add-on, but it also performs other
operations. Below is described its workflow:

1. It collects CPU and memory metrics every five seconds for ten minutes
(in this phase no network services are deployed).

2. After these first ten minutes, the program starts a timer to calculate
the time needed by OSM to on-board a network service (during the

177

Chapter 11 Experimental results

test we deployed ten different network services). It then uploads the
VNFD and the NSD of the network service and finally deploys it. The
timer stops when the network service is fully functional.

3. It then recollects CPU and memory metrics every five seconds for ten
minutes.

4. It performs point 2 and point 3 other nine times with different network
services. It should be noted that during point 3 the collection of the
metrics involves an increasing number of network services.

5. At the end of the test, the results are stored in a .csv file.

To upload network service’s packages and perform the deployment, the pro-
gram runs OSM commands via osmclient. The .csv files are parsed to pro-
duce graphs to show the relevant results.

5gcnl-osm-20 CPU performances In this subsection we will show the
results obtained from the analysis of the plots regarding the CPU core con-
sumption of OSM with no network services instantiated and with ten network
services instantiated.

From the graph in Figure 11.7 it can be seen that during the idle state, with
zero NS instantiated, all the Pods have a consumption of CPU cores below the
value 0.02. In this phase, the only Pod to have a much higher consumption
of CPU cores is the keystone Pod which reaches the value 0.08. When the
number of instanced NS increases to ten, the situation changes slightly for
all Pods except for mon and mongodb. These two Pods drastically increase
their core consumption until they reach 0.47 and 0.1 respectively. The mon
increases its consumption by a factor of 23.5 and the mongodb by a factor of
10.

The Violin Plot in Figure 11.8, shows how the CPU cores consumption values
are distributed as the number of network services instantiated increases on the
mon Pod. The graph is composed by a Box Plot every two network services
instantiated and the distribution of all CPU core consumption measurements
made on the Pod with that number of network services. From this graph it can
be seen that the increase in CPU cores consumption is similar to a logarithmic
trend, with a large increase with few network services instantiated and with

178

11.1 5G Simulator setup

Figure 11.7: Comparison of CPU cores required by OSM with zero and ten
network services deployed.

a tendency to stabilize as the number increases. We highlight the presence
of outlier values that reduce CPU core consumption to almost zero.

Figure 11.8: Distribution of CPU cores consumption values with increasing
number of network services instantiated of the MON module.

Figure 11.9 contains another Violin Plot but referring the mongodb Pod.
Unlike the previous graph, the outliers in this case peak upwards and not
downwards. In this case the distribution of the values over time seems linear

179

Chapter 11 Experimental results

and not logarithmic.

Figure 11.9: Distribution of CPU cores consumption values with increasing
number of network services instantiated of the mongodb Pod.

5gcnl-osm-20 memory performances In this subsection we will show
the results obtained from the analysis of the plots regarding the memory
allocation of OSM with no network services instantiated and with ten network
services instantiated.

In Figure 11.10 the differences between zero or ten NSs instantiated are low
for most the Pods. The highest peak is generated by the Pod mongodb which
reaches 1.4 GB with zero instantiated NSs and then up to 1.45 GB with ten
NSs instantiated. All other Pods have values less than or equal to 250 MB
except for kafka (500 MB) and mon. Also in this case the Pod mon shows a
more significant increase compared to all the other modules going from 260
MB to 340 MB.

11.2 Assurance in 5G networks

In this section we show how several 5G infrastructure properties of different
types can be verified using the methodology described in Section 3.3.

180

11.2 Assurance in 5G networks

Figure 11.10: Comparison of memory allocated by OSM with zero and ten
network services deployed.

11.2.1 Network connection availability

Property p1 describes the ability of the infrastructure to provide network
functionalities to the connected devices and the services being hosted. This
property is fundamental for the correct operation of the 5G infrastructure
and its continuous verification is of particular interest to both the users and
the edge provider.

Metrics As the property (p1) references multiple functionalities (f1, f2, f3, f4, f5),
one for each level of connectivity, we have to consider various metrics. In this
case, we assume to have a metric net_avail(t, from, to) specific for each func-
tionality, allowing us to test whether the communication is possible between
from and to and returning upload/download speeds and latency measure-
ments for the time instant t.

Contract This property can be verified using a parametric contract that
takes in consideration the values obtained during the metrics evaluation phase
and compares them to user-expected parameters. E.g., if we only consider the
expectancy of a user for mobile connection to Internet, we can hypothesize
the user to want a minimum link speed of 25 mb/s from its UE to the Internet
in both directions and a maximum introduced latency of 10 ms. Therefore,

181

Chapter 11 Experimental results

the contract takes the form of Equation 11.1.

net_avail_network(t) = let

ue_dn = net_avail(t, ue, dn);
ue_nf = net_avail(t, ue, nf);
nf_dn = net_avail(t, nf, dn);
sp = 100mb/s;

la = 100ms;

in
ľ

resPtue_dn,ue_nf,nf_dnu

res.downlink ą sp ^ res.uplink ą sp ^ res.latency ă la

(11.1)

A more advanced version of this contract can include checks on network
performance of the infrastructure from the point of view of the deployed
services, giving users the ability to specify the from and to parameters.
Furthermore, we can extend this contract to time ranges, requiring all checks
to be valid for each measurement collected at fixed intervals in the interval
[t1, t2].

11.2.2 Network latency performance

A network latency performance property (p4) is awarded when all network
communications can be achieved within a given time threshold (f7, f9). The
property is, therefore, parametric, leaving the user the ability to define the
maximum expected latency.

Metrics The property in question requires all network communications to
be achievable under a certain time threshold. Is therefore necessary to have
a measure of latency for each point in the network, regardless of which input
and output. We can reuse the same net_avail(t, from, to) function used in
Section 11.2.1, extracting the latency argument of the results.

Contract We need to check whether the worst case latency measurement
is under the expected value provided by the user. To do this, we can compare
the parameter with double the worst scoring measurement for the instant t

182

11.2 Assurance in 5G networks

as shown in Equation 11.2.

net_avail_network(t, latency, hops) = let

ue_dn = net_avail(t, ue, dn);
ue_nf = net_avail(t, ue, nf);
nf_dn = net_avail(t, nf, dn);
worst_lat = max(ue_dn.latency, ue_nf.latency, nf_dn.latency);
worst_hops = max(ue_dn.hops, ue_nf.hops, nf_dn.hops);

in

worst_latˆ 2 ď latency ^ worst_hopsˆ 2 ď hops
(11.2)

11.2.3 Network management automation

The network management automation (p8) is the property of being able to
self-manage the network resources, reacting to network intents (f18, f19).
We can expect this system to have this property if its resource management
control cycle uses a fair allocation of resources.

Metrics To evaluate this property we need a metric that lists the cur-
rent hard-requirements for network resources net_hreq(t, req) and a met-
ric that maps each network request with the actually provided resources
net_sres(t, req). Here we assume that network resource requests have a
unique identifier req P REQ.

Contract To evaluate the network management automation quality of the
system, we check whether all hard requirements are met at instant t as shown
in Equation 11.3.

net_mgmt_auto(t) =
ľ

reqPREQ

net_hreq(t, req) ď net_sres(t, req) (11.3)

183

Chapter 11 Experimental results

11.2.4 Storage confidentiality

The storage confidentiality property (p10) indicates the impossibility of unau-
thorized access to a data resource. There are many ways of implementing this
type of checks depending on the level of detail required [115,116], but for ease
of explanation we consider basic user-level access to resource.

Metrics We adopt a metric has_access(t, u, r) that returns true or false
depending on whether the user u has access to the resource r at the instant
t.

Contract We verify the property by checking that for each resource r no-
body other than the owner of r has access like in Equation 11.4.

storage_conf(t) =
ľ

rPresources, u1P(usersztuu)

has_access(t, u1, r) == false

(11.4)

11.2.5 Experimental evaluation

The experimental evaluation of 5G assurance contracts is a complex pro-
cess that involves numerous layers of abstraction. We use a 5G simulator
based on the Open Networking Foundation’s Aether1, which is deployed in
a Kubernetes environment. The simulator consists of the 5GS core network
microservices, SD-Core, which is based on the Free5GC2 project, a virtualised
O-RAN compliant gNB, SD-RAN, which simulates the radio part of the mo-
bile network, and Aether ROC, which coordinates the network components
and automates their configuration and resource management.

While some KPIs can be extracted from the execution environment, such as
those related to network connections and traffic or compute resource usage,
this treats the 5G components as black boxes and lacks transparency into their
internal state. One of the next research steps on this topic is to extend the
Free5GC microservices with monitoring capabilities using OpenTelemetry.

1https://opennetworking.org/aether/
2free5gc.org/

184

https://opennetworking.org/aether/
free5gc.org/

11.3 Assurance and Certification for CDN networks

This will allow us to expose meaningful monitoring endpoints on the internal
state of the microservices.

The monitoring data is fetched by an OpenTelemetry collector, such as Jaeger3,
which provides long-term storage of the measurements. An AA, the assur-
ance component managed by an AL which executes the verification process,
receives a verification task. It then begins to assess the relevant contract
by retrieving data from the collector and generating a Boolean value from
the contract function. The outcome is then incorporated into a verification
report and returned as the task output.

The monitoring endpoints are currently unavailable in the implementation,
thus the experimentation is temporarily halted. We aim to expand the soft-
ware to verify this approach in our forthcoming research.

11.3 Assurance and Certification for CDN
networks

We experimentally evaluated our certification methodology in a simulated
ICN for NFPs CS availability, host availability, and network availability. To
evaluate the performance of our certification process, we first defined the certi-
fication contracts for the target properties (Section 11.3.1); we then evaluated
the performance of the contract verification process (Section 11.3.2) and the
network bandwidth consumed by the entire certification process execution
(Section 11.3.3). We executed our experiments using the Criterion frame-
work for the Rust programming language, repeating all tests at least 100
times and until the confidence on the measure is higher than 95%. All tests
have been run on Linux with kernel 5.10.78 using an AMD 5900x processor
and 32 GB of RAM.

11.3.1 Certification Contracts

We defined a set of contracts modelling NFPs: CS availability, host availabil-
ity, and network availability in a ICN network node as follows.

3https://www.jaegertracing.io

185

https://www.jaegertracing.io

Chapter 11 Experimental results

CS optimality It verifies the correct configuration of the CS and its oper-
ational status. It contains the following rules:

• CSMemoryusageUB checks whether the CS is lower than 60% to pre-
vent memory starvation;

• CSContract checks whether the CS selected contract is Least Recently
Used (LRU);

• CSUsageLB checks whether the CS has at at least 1% utilization to
verify that it is enabled and operational.

Execution optimality It verifies whether the network node has enough
resources to operate correctly and avoid starvation. It contains the following
rules:

• FreeMemory verifies whether the node has at least 200 MB of memory
as a minimal system requirement;

• NodeLoadUB checks whether the node CPU delayed load is higher than
90% as an indicator of over-utilization.

Regular network traffic It analyses the recent network traffic looking for
anomalies regarding the packet size and name components. It contains the
following rules:

• PITDataMinSizeLB defines a lower bound of 10 B to the forwarded
data packets to detect possible pollution attacks attempts;

• PITInterestMinComponentsLB and PITInterestMinComponentsUB iden-
tify a range of valid values between 3 and 12 for the average number
of name components in the forwarded interest packets;

• PITDataAvgComponentsLB and PITDataAvgComponentsUB define a
range of valid values between 3 and 12 for the average number of name
components in the forwarded data packets;

• PITPendingInterestUB sets an upper bound of 100 pending interest

186

11.3 Assurance and Certification for CDN networks

packets stored in the Pending Interest Table (PIT);

• PITInterestMinSizeLB defines a lower bound of 5 B to the minimum
size of the forwarded interest packets.

Healthy node It combines using a Boolean AND the three previous con-
tracts.

11.3.2 Contract Verification Process Performance

Given our implementation of the contract verification process, its asymptotic
complexity is estimated as O(|n| ¨ |r|) with |n| being the number of nodes
and r the number of rules included in the contract. We empirically verified
this behaviour by measuring its execution time varying the complexity of
the target contract and the number of target network nodes. To exclude
any delay or interference due to network interactions, we simulated local
executions only, providing precached measurements for each network node.

Figure 11.11 shows the execution time varying the number of target network
nodes from one to 1000 in the 4 contracts. The execution time grew linearly
with the number of nodes for all the contracts. Contract healthy node has
lowest performance being a combination of the other three contracts. Differ-
ence between contracts CS optimality, execution optimality, regular network
traffic depend on the performance of the specific rules composing them.

We then measured the impact of the contract complexity on the execution
time in terms of rules by comparing the results obtained with a fixed number
of nodes and a given time interval. We repeated the tests comparing the exe-
cution time of the 4 contracts using 500 target nodes. The average execution
time for the 4 contracts are 16 ms for CS optimality, 27 ms for Execution
optimality, 11 ms for Regular network traffic and 54 ms for Healthy node.
Our results show how contract Healthy node has an evaluation time close to
the sum of the execution time of the single contracts. We observe that the
growth is linear with the number of evaluated rules, as expected.

Although the asymptotic complexity seems to be reflected in our experi-
ments, it refers to the worst case, where i) the measurements cannot be

187

Chapter 11 Experimental results

0 200 400 600 800 1000
Nodes

0.0

0.2

0.4

0.6

0.8

1.0

E
xe

cu
ti

o
n
 t

im
e
 (

n
s)

1e8

CS optimality

Execution optimality

Healthy node

Regular network traffic

Figure 11.11: Execution time for the 4 contracts varying the number of veri-
fied nodes.

shared between one or multiple rules, ii) no caching of the previously evalu-
ated contracts is allowed. If we consider sharing and caching, the asymptotic
complexity is reduced to a logarithmic growth. Considering the caching abil-
ities of both the AL and the network, a more fair asymptotic complexity
estimation is O(log(|n|) ¨ log(|r|)).4

11.3.3 Network Usage

We evaluated the network bandwidth used by the services during the certifi-
cation process. The maximum size of each network packet is generally limited
by the ICN protocol, 4 KB packets in NDN. We then used an upper bound to
the number of network requests to estimate the total traffic. We expect the
total number of requests to complete a single certification to be lower than
O(|n| ¨ |r| ¨ |m|), where |n| is the number of network nodes, |r| is the number of
rules in the contract, and |m| is the number of metrics. Assuming the total

4Additional improvements can be obtained by parallelizing the execution of metric and
rule evaluation, first inspecting their dependencies.

188

11.3 Assurance and Certification for CDN networks

number of metrics is limited and lower than the number of rules, with rules
reusing the same measurements, we can simplify the previous asymptotic
complexity to O(|n| ¨ |m|).

Figure 11.12 shows the relationship between the number of evaluations and
the number of metrics evaluation requests sent during a certification process
in the 4 contracts in Section 6.3.4. Our results show a linear correlation
between evaluations and requests. The evaluation to requests ratio is specific
to the contract definition and varies from 2:1 ratio, with contract Execution
optimality, up to 10:1 ratio, with contract Healthy node.

The contract verification service in the decentralized certification process pro-
duces additional traffic in the form of contract verification requests, contract
query requests, and certificates retrieval. While in the first two cases their
number is constant, the number of certificates retrieval requests grows linearly
with the number of nodes and rules. A single certificate contains information
about multiple nodes and multiple rules, therefore the actual ratio follows a
logarithmic growth.

0 2000 4000 6000 8000 10000

104

105

106

107

108

N
e
tw

o
rk

 u
sa

g
e
 (

B
)

Number of metric requests per policy evaluation

CS optimality

Execution optimality

Healthy node

Regular network traffic

Figure 11.12: Number of metrics requests per contract evaluation.

Again, this experiment had been carried out in the worst case scenario, where

189

Chapter 11 Experimental results

none of the requests are locally cached in the AL. When caching at both AL
and ICN network nodes are considered, asymptotic complexity is reduced to
O(log(n) ¨ log(m)). In a more efficient implementation, measurements and
rule evaluations can be retrieved once and shared by multiple rules, resulting
in a drastic decrease in the total number of requests. We note that thanks
to the ICN network caching capabilities, these request are more likely to be
resolved by the caches of one of the network nodes in the request path before
reaching their target node.

11.4 Assurance in Big Data Analysis Platforms

We experimentally evaluated the utility of our approach with a complete de-
tailed walkthrough applied to our real scenario in Section 7.3 with the scope
of evaluating its trustworthiness and improve its transparency. In this work
we modelled trustworthiness using our overall assurance confidence level in
Definition 7.4.4 and approximated the concept of transparency as the level
of inspectability, that is, the number of probes executed to inspect the given
system divided by the total number of available probes that can be applied.
We note that we favoured simplicity over complexity in defining trustwor-
thiness and transparency, to the aim of demonstrating the soundness of our
assurance approach, the first applied to big data pipelines. We finally discuss
the feasibility of our solution in terms of computational effort, considering
different evaluation scenarios.

11.4.1 Experimental setup

Our experimental setup is a portion of the H2020 EVOTION platform hosted
on our premises including more than 100 tasks, 20 analytics templates, and
30 analytics instances. Pipelines and tasks are implemented in Spark 2.3 and
Spark 2.2 using Python or Java, and when needed using Spark mllib. Our
H2020 EVOTION platform is grounded on the following ecosystem: Linux
5.16.19 (NixOS), Apache Hadoop 3.3.1, Apache Spark 3.2.1, Apache Air-
flow 2.2.4. The platform is deployed on a ‘bare-metal’ infrastructure using
an AMD 5900x and 32 GB of RAM. The service configurations and the
pipeline implementations are available at bit.ly/3uy1Op4. Our Assurance

190

bit.ly/3uy1Op4

11.4 Assurance in Big Data Analysis Platforms

architecture in Section 7.1.2 is deployed on top of the H2020 EVOTION Big
Data engine, to exploit the parallelisation capabilities and synchronize the
execution of assurance evaluation activities with the instance triggering.

11.4.2 Assurance Evaluation Walkthrough

We present a detailed walkthrough of our methodology based on an extended
version of our running example in Section 7.3, where the client asks for both
confidentiality in transit and at rest. Table 11.3 shows our walkthrough
scenario including the template Πλ,γ and instance Iθ,ψ annotations.

The walkthrough is organized as follows. First, we present the execution of
our assurance methodology (separating pipeline tasks from ecosystem ser-
vices), including details on the assessment probes (P), the evaluation values
(E), and the assurance confidence levels (Aτ,r). Second, we present the pro-
cess to compute the final overall assurance aggregating the assurance confi-
dence levels at requirements level.

Pipeline Assurance

Let us start considering the three annotations rθ1, rθ2 and rθ3 that are common
to all the tasks t̂i P p̂. The assessment processes are implemented with the
same set of probes P1, P2, and P3 for rθ1, P4 for rθ2, and P5 and P6 for rθ3. We
recall that probe types are defined in Table 7.2.

P1(r
θ
1, ˚) is a Lineage probe focused on verifying that the spark job imple-

menting the tasks t̂i is writing data on the HDFS offered by the service ŝ1 P ê
only exploring the Spark DAG. It is focused on verifying the compliance to a
given Spark writing pattern (i.e., expected_dag) and explores the spark DAG
using the spark log.

P2(r
θ
1, ˚) is a Code Inspection probe focused on verifying connection to exter-

nal data storage observable within the source code. It is focused on finding
specific path patterns (i.e., expected_paths) within a task source code.

P3(r
θ
1, ˚) is a Parameters Check probe focused on verifying if parameters

191

Chapter 11 Experimental results

Table 11.3: Walkthrough scenario derived from the running example in Sec-
tion 7.3.

R Description
Template requirements

rλ1 Confidentiality at rest and in transit for all the t in p
rλ2 Authorization for the fileSystem task t in p
rγ1 Confidentiality at rest and in transit for all the s in e

Pipeline Instance requirements derived from rλ1

rθ1 No temporarily unprotected data storage for all the t̂ P p̂
rθ2 Avoid connection to external services for all the t̂ P p̂
rθ3 Avoid use of vulnerable code/libraries for all the t̂ P p̂
rθ4 Pipeline integrity checking the correct ordering of tasks t̂ P p̂

Pipeline Instance requirements derived from rλ2

rθ5 Check Authorization for ingestion task t̂1 P p̂
rθ6 Check ownerships at rest for visualization tasks t̂4 P p̂

Ecosystem Instance requirements derived from rγ1

rψ1 Encrypted HDFS for the ŝ1 P ê

rψ2 Inter-node communication security for the ŝ1 and ŝ2 P ê

rψ3 Orchestrator Confidentiality for the ŝ3 P ê

rψ4 Communication channel security for the ŝ4 P ê

rψ5 Authentication-enabled for the ŝ4 P ê

rψ6 Authorization policies-enabled for the ŝ5 P ê

rψ7 Vulnerability check for all the services ŝ P ê

for writing at rest (if any) are referring to the HDFS offered by the service
ŝ1 P ê or not. It is based on controlling the actual parameters of a given task
and match them against expected parameters/patterns (in this case writing
URLs)

P4(r
θ
2, ˚) is a Code Inspection probe focused on verifying external network

connections used for setting up data traffic. It is based on checks for connec-
tions to external sources (if any).

P5(r
θ
3, ˚) is a Code Vulnerability Check probe focused on finding vulnerable

192

11.4 Assurance in Big Data Analysis Platforms

code used in the spark task t̂i. It is based on Pylint as tool for Python
vulnerability check.

P6(r
θ
3, ˚) is a Dependency Check probe (see Table 11.6) focused in finding

vulnerable libraries used in the spark task t̂i. It is based on analysis of the
“requirements.txt” file.

Let us consider rθ4, it requests to verify absence of hidden tasks or a wrong
sequence of task in the pipeline compared to the one declared. It is imple-
mented with an Orchestration Check P7(r

θ
4, p̂) targeting the Python airflow

description of pipeline DAG and verifying the ordering and presence of addi-
tional tasks compared to what is expected.

Let us consider rθ5 it is annotated on the ingestion task t̂1 only. The assessment
process is implemented with the probe P8(r

θ
5, t̂1) realized via Testing Probe

verifying that the users executing the pipeline against ownership of the source
of data ingested in order to check that the pipeline has the right to carry out
the ingestion.

Considering rθ6 it is annotated on the visualization task t̂4 only. The assess-
ment process is implemented with the probe P9(r

θ
6, t̂4) realized via Testing

Probe focused on the ownership at rest in order to verify that the pipeline
write the data preserving the original ownership of the pipeline executor
avoiding confidentiality infringement.5

Table 11.4 summarizes the results of the execution of our methodology in the
walkthrough scenario in Table 11.3. It presents the pipeline tasks t̂, annotated
requirements R, and the assessment probes (P) used to evaluate them. It also
presents the retrieved results in terms of evaluation value (E) and assurance
confidence level (A).

Probes P1 to P3 and P6 to P9 did not identify any significant issue in the
pipeline, regardless the target, resulting in an optimal evaluation of 1.0. On
the other hand, P4(r

θ
2, t̂4), for target t̂4 and requirement rθ2, and P5, for every

target and requirement, identified the following issues. P4(r
θ
2, t̂4) identified

an external networking connection within t̂4 resulting in E = 0, meaning that
rθ2 is not supported by t̂4 according to P4. P5 identified several warnings and

5Current Big Data engines may lead to issues of data ownerships in a multi-tenant con-
text [117,118].

193

Chapter 11 Experimental results

coding convention violations (e.g., too lengthy lines and naming convention
violations), resulting in a set of evidence evaluated with E = 0.75 by our
process. It means that some weaknesses are identified but none of them
are major according to requirement rθ3. The assurance confidence levels (A),
represented in the last column of Table 11.4, are calculated according to
Definition 7.1.4. We note that the lowest assurance confidence level (0.66)
was computed for task t̂4 according to requirement rθ2; it was due to the
aforementioned issue discovered by the assessment probe P4(r

θ
2, t̂4).

Table 11.6 shows the pseudocode of the pipeline probes from P1 to P9 aggre-
gated according to their types as defined in Table 7.2.

Table 11.4: Assurance evaluation results for pipeline p̂ and tasks t̂ considering
the requirements R of our walkthrough scenario in Table 11.3.
Assurance probes P (r, τ), evaluations E(EV, r) and assurance
confidence levels Aτ,r are presented.

Pipeline tasks t̂ P T̂

t̂ R P (r, τ) E(EV, r) Aτ,r

t̂1

rθ1 P1(r
θ
1, t̂1) [1.0] 1.0

rθ2 P2(r
θ
2, t̂1), P3(r

θ
2, t̂1), P4(r

θ
2, t̂1) [1.0, 1.0, 1.0] 1.0

rθ3 P5(r
θ
3, t̂1), P6(r

θ
3, t̂1) [0.75, 1.0] 0.88

rθ5 P8(r
θ
5, t̂1) [1.0] 1.0

t̂2

rθ1 P1(r
θ
1, t̂2) [1.0] 1.0

rθ2 P2(r
θ
2, t̂2), P3(r

θ
2, t̂2), P4(r

θ
2, t̂2) [1.0, 1.0, 1.0] 1.0

rθ3 P5(r
θ
3, t̂2), P6(r

θ
3, t̂1) [0.75, 1.0] 0.88

t̂3

rθ1 P1(r
θ
1, t̂3) [1.0] 1.0

rθ2 P2(r
θ
2, t̂3), P3(r

θ
2, t̂3), P4(r

θ
2, t̂3) [1.0, 1.0, 1.0] 1.0

rθ3 P5(r
θ
3, t̂3), P6(r

θ
3, t̂1) [0.75, 1.0] 0.88

t̂4

rθ1 P1(r
θ
1, t̂4) [1.0] 1.0

rθ2 P2(r
θ
2, t̂4), P3(r

θ
2, t̂4), P4(r

θ
2, t̂4) [1.0, 1.0, 0.0] 0.66

rθ3 P5(r
θ
3, t̂4), P6(r

θ
3, t̂1) [0.75, 1.0] 0.88

rθ6 P9(r
θ
6, t̂4) [1.0] 1.0

p̂ rθ4 P7(r
θ
4, p̂) [1.0] 1.0

194

11.4 Assurance in Big Data Analysis Platforms

Ecosystem Assurance

Table 11.5: Assurance evaluation results for ecosystem services ŝ P Ŝ consid-
ering the requirements R of our scenario in Table 11.3. Assurance
probes P (r, τ), evaluations E(EV, r) and assurance levels Aτ,r are
presented.

Ecosystem services ŝ P Ŝ

ŝ R P (r, τ) E(EV, r) Aτ,r

ŝ1
rψ1 P10(r

ψ
1 , ŝ1) [0.1] 0.1

rψ2 P11(r
ψ
2 , ŝ1) [0.1] 0.1

ŝ2 rψ2 P12(r
ψ
2 , ŝ2) [0.1] 0.1

ŝ3 rψ4 P13(r
ψ
4 , ŝ3) [0.1] 0.1

ŝ4
rψ4 P14(r

ψ
4 , ŝ4) [1.0] 1.0

rψ5 P15(r
ψ
5 , ŝ4) [1.0] 1.0

ŝ5 rψ6 P16(r
ψ
6 , ŝ5) [1.0] 1.0

ŝ5 rψ7 P17(r
ψ
7 , ŝ5) [0.57] 0.57

Let us start considering ŝ1 (i.e., Hadoop HDFS) used for ingestion and vi-
sualization. It is associated with requirements rψ1 and rψ2 . In both cases,
to implement the relative assessment processes, Configuration Check probes
P10(r

ψ
1 , ŝ1) and P11(r

ψ
2 , ŝ1) are used. Probe P10 is focused on verifying

whether the HDFS is configured to be encrypted, while probe P11 is fo-
cused on verifying that secure channels are active between the different stor-
ing nodes of the HDFS. Considering ŝ2 (i.e., Spark) and ŝ3 (i.e., Airflow),
which are services used to execute the pipeline, they are both associated
with requirements rψ2 and rψ3 , respectively. The relative assessment processes
are implemented using specific Configuration Check probes P12(r

ψ
2 , ŝ2) and

P13(r
ψ
3 , ŝ3) aimed to verify specific security features of Spark for internode

communication and Airflow security, respectively.

ŝ4 (i.e., Knox), which is used to provide authentication mechanisms, it is
associated with requirements rψ4 and rψ5 . The corresponding assessment pro-
cesses are implemented using Testing probe P14(r

ψ
4 , ŝ4) to test the security of

the channel used to carry out authentication (Kerberos) and a Configuration

195

Chapter 11 Experimental results

Table 11.6: Pipeline probe scripts: Pseudocode.

Lineage
Probes 1: P1(r

θ
1 ,˚)

def p1(expected_dag, app_id):
evidence.logs = get_spark_logs(app_id)
for job in evidence.logs.jobs:

if job not in expected_dag:
evidence.warnings.push(f”Unexpected job {job}”)

return evidence

Parameters Check
Probe 3: P3(r

θ
1 ,˚)

def p3(expected_params, task_id):
params = get_params(task_id)
evidence.params = params
for param, exp_param in zip(params, expected_params):

if not param.matches(exp_params):
evidence.warnings.push(

f”Param {param} not matching”
)

return evidence

Code Vulnerability Check
Probe 5: P5(r

θ
3 ,˚)

def p5(task_id):
evidence.source_code = get_source(task_id)
evidence.warnings = call_pylint(source_code)
return evidence

Dependency Check
Probe 6: P6(r

θ
3 ,˚)

def p6(task_id):
evidence.requirements = get_requirements(task_id)
output = call_safety(evidence.requirements)
evidence.warnings = json.loads(output.decode().strip())
return evidence

Orchestration Check
Probe 7: P7(r

θ
4 , p̂)

def p7(expected_dag):
dag = get_current_dag()
evidence.dag = dag
for task in dag:

exp_task = expected_dag.find(task)
if exp_task is None:

evidence.warnings.push(
f”Unexpected task {task}”

)
if task.deps != exp_task.deps:

evidence.warnings.push(
f”Unexpected {task} deps.”

)
return evidence

Code Inspection
Probe 2: P2(r

θ
1 ,˚)

def p2(expected_paths, task_id):
evidence.source_code = get_source(task_id)
evidence.detected_paths = get_hdfs_paths(

evidence.source_code
)
for path in evidence.detected_paths:

if path not in expected_paths:
evidence.warnings.append(

f”Unexpected path {path}”
)

return evidence
Probe 4: P4(r

θ
1 ,˚)

def p4(task_id, expected_services):
evidence.activity = get_network_activity(task_id)
evidence.services = parse_services(evidence.activity)
for service in evidence.services:

if service not in expected_services:
evidence.warnings.push(

f”Unexpected service {service}”
)

return evidence

Testing
Probe 8: P8(r

θ
5 , t̂1)

def p8(user, file_path):
try:

file = access_as_user(user, file_path)
file.head()
evidence.output = ”File can be ingested”

except PermissionError:
evidence.output = ”Permission Error”

except MissingFile:
evidence.output = ”File not found”

return evidence
Probe 9: P9(r

θ
6 , t̂4)

def p9(expected_permissions, user, file_path):
try:

file = access_as_user(user, file_path)
permissions = file.get_permissions()
evidence.permissions = permissions
if permissions == expected_permissions:

evidence.output = ”Permissions match”
else:

evidence.output = ”Invalid permissions”
except PermissionError:

evidence.output = ”Permission Error”
except MissingFile:

evidence.output = ”File not found”
return evidence

Check probe P15(r
ψ
5 , ŝ4) aimed to verify the authentication configuration.

ŝ5 (i.e., Ranger), which is used to authorize users to carry out analytics, is
associated with requirements rψ6 . The relative assessment processes are imple-
mented using Monitoring probe P16(r

ψ
6 , ŝ5) aimed to verify policies triggered

by Ranger.

196

11.4 Assurance in Big Data Analysis Platforms

According to requirement rψ7 , for every service ŝ P ê, a vulnerability check
needs to be executed. The assessment process is implemented as a Vulnerabil-
ity Check probe P17(r

ψ
7 , ˚) aimed to find vulnerabilities that can be relevant

for requirement rψ7 on all services ŝ P ê.

Table 11.5 summarizes the results of the execution of our methodology in
the walkthrough scenario in Table 11.3. It presents the ecosystem services ŝ,
annotated requirements R, and the assessment probes (P) used to evaluate
them. It also presents the retrieved results in terms of evaluation value (E)
and assurance confidence level (A).

Each probe in the Table 11.5 produced a single value as evaluation E and
thus the same value is also reported as the assurance confidence level A. More
than half of them obtained a low assurance confidence level (A = 0.1) due to
the suboptimal configurations adopted by the relative services ŝ. P10(r

ψ
1 , ŝ1)

warned about a misconfiguration over the in-transit data encryption, while
P11(r

ψ
2 , ŝ1) signalled that the registry security configuration was not enabled.

P12(r
ψ
2 , ŝ2) detected that network encryption was not enabled for Spark, while

P13(r
ψ
4 , ŝ3) highlighted the encryption fernet key being unset. P17(r

ψ
7 , ŝ5)

found several registered CVEs of various severity, the worst of which had
a score of 4.3, resulting in an assurance confidence level of A = 0.57. The
remaining probes did not identify significant issues and returned an opti-
mal value A = 1. Table 11.7 shows the pseudocode of the different service
ecosystem probes dividing them into the different probe types as defined in
Table 7.2.

Overall Assurance Evaluation

The final assurance evaluation was carried out according to Definition 7.4.4
leading to the following overall assurance confidence levels L˚,rλ1

= 0.66,
L˚,rλ2

= 1 and L˚,rγ1
= 0.1 aggregated on the relevant targets ˚. We note

that the overall assurance confidence level for rλ1 Confidentiality at rest and
in transit is impacted negatively by the assurance evaluation on rθ2 related
to Avoid connection to external services carried out by P4 probe on t̂4 =
saveToHDFS(model). We also note that the ecosystem of services clearly
shows the lowest assurance confidence level due to severe configuration issues
for ŝ1, ŝ2, and ŝ3 retrieved by the relative probes.

197

Chapter 11 Experimental results

Table 11.7: Service ecosystem probe scripts: Pseudocode.

Configuration check
Probe 10: P10(r

ψ
1 , ŝ1)

def p10(config_endpoint):
config = get_hadoop_configuration(config_endpoint)
evidence.config = config
warnings = []
if config[”dfs.encrypt.data.transfer”] == ”false”:

warnings.append(
”In−transit data encryption is disabled”

)
if (

config[”yarn.intermediate−data−encryption.enable”]
== ”false”

):
warnings.append(

”Intermediate data encryption is disabled”
)

...
evidence.warnings = warnings
return evidence

Probe 11: P11(r
ψ
2 , ŝ1)

def p11(config_endpoint):
config = get_hadoop_configuration(config_endpoint)
evidence.config = config
warnings = []
if config[”dfs.permissions.enabled”] == ”false”:

warnings.append(”FS access control is disabled”)
if (

config[”dfs.permissions.superusergroup”]
== ”supergroup”

):
warnings.append(”Task has unrestricted permissions”)

if config[”hadoop.registry.secure”] == ”false”:
warnings.append(”Registry security is not enabled”)

if config[”hadoop.security.authorization”] == ”false”:
warnings.append(”Authentication is disabled”)

...
evidence.warnings = warnings
return evidence

Monitoring
Probe 16: P16(r

ψ
6 , ŝ5)

def p16(expected_policies, api_endpoint):
logs = get_ranger_logs()
evidence.logs = logs
warnings = []
for event in logs:

if not event.matches(expected_policies):
warnings.append(f”Unexpected event {event}”)

evidence.warnings = warnings
return evidence

Probe 12: P12(r
ψ
2 , ŝ2)

def p12(app_id, api_endpoint):
config = get_spark_config(app_id, api_endpoint)
evidence.config = config
warnings = []
if config[”spark.network.crypto.enabled”] != true:

warnings.append(”Network encryption disabled”)
if config[”spark.io.encryption.enabled”] != true:

warnings.append(”IO encryption disabled”)
...
evidence.warnings = warnings
return evidence

Probe 13: P13(r
ψ
3 , ŝ3)

def p13(api_endpoint):
config = get_airflow_config(api_endpoint)
evidence.config
warnings = []
if config.core.get(”fernet_key”) is None:

warnings.append(”Fernet key is not set”)
if config.kubernetes.verify_ssl is False:

warnings.append(”SSL cert. check disabled”)
...
evidence.warnings = warnings
return evidence

Probe 15: P15(r
ψ
5 , ŝ4)

def p15(exp_user_perms, api_endpoint):
for user, exp_perms in exp_user_perms.items():

perms = get_perms(user, api_endpoint)
evidence.permissions[user] = perms
if not exp_perms.matches(perms):

evidence.warnings.append(
f”unexpected perms. {perms} for {user}”

)
return evidence

Testing
Probe 14: P14(r

ψ
4 , ŝ4)

def p14(auth_config, api_endpoint):
result = authenticate(auth_config, api_endpoint)
if result.failed():

evidence.output = ”Authentication failed”
elif result.unauthorized():

evidence.output = ”Not authorized”
...
return evidence

Vulnerability Check
Probe 17: P17(r

ψ
7 ,˚)

def p17(service):
evidence.warnings = openvas_analysis(service)
return evidence

11.4.3 Performance Evaluation

We evaluate the computational effort requested by our assurance process
for the walkthrough in Section 11.4.2 considering the different probe types
adopted and different changing scenarios as follows. We note that our as-
surance solution reuses evidence from related assessment processes in the

198

11.4 Assurance in Big Data Analysis Platforms

framework of computing the final assurance confidence level.

1. Contextual Changes (CC): It includes changes due to the external fac-
tors like new version of the probe used in the repository or new dis-
covered vulnerabilities. This scenario requires re-execution of the new
probes as well as of the vulnerability-related probes.

2. Pipeline Changes (PC): It includes changes due to different param-
eters and changes at orchestration level. This scenario requires the
re-execution of the task or orchestration probes showing changes only.

3. Ecosystem Changes (EC): It includes different versions/configurations
of services at ecosystem level. This scenario requires the re-execution
of the ecosystem level probes only.

4. Instance Changes (IC): It includes changes requesting complete assur-
ance re-evaluation.

More specifically, in our walkthrough, we consider i) CC assuming new vul-
nerabilities discovered for all the services used at ecosystem level, ii) PC
assuming new version of k-means modelling task only, iii) EC assuming new
version of HDFS service, iv) IC assuming a new task for ingestion based on
Hive instead of HDFS. We also consider a scenario where the assurance is
re-evaluated without any changes.

Figure 11.13 shows a stacked histogram of the time requested to execute the
entire assurance process in the different scenarios considering the different
adopted probe types.

The pipeline taken as example is training a k-means model based on the
dataset ‘digits’ from the scikit-learn6 library. The model implementation is
provided by the Spark ML library7. Finally, the trained model is serialized
and saved in an Hadoop storage. The time necessary to execute the pipeline
is 54 seconds.

The pipeline probes are executed in the CC, PC and IC scenarios requiring
0.13 seconds, while the service probe are executed in the EC and IC scenarios

6https://scikit-learn.org
7https://spark.apache.org/mllib

199

https://scikit-learn.org
https://spark.apache.org/mllib

Chapter 11 Experimental results

CC PC EC IC NC
Scenario

0

10

20

30

40

50

60

70

Ex
ec

ut
io

n
tim

e
(s

)

Pipeline
General purpose probe

Pipeline probe
Service probe

Task probe

Figure 11.13: Performance on the walkthrough in different scenarios: contex-
tual changes (CC), pipeline changes (PC), ecosystem changes
(EC), instance changes (IC) and no changes (NC). Compu-
tational time requested by the different probes aggregated by
probe types.

in 3.65 seconds. The general purpose probes have a total execution time of
5.79 seconds in scenarios EC and IC, while in CC their evaluation is completed
is 0.25 seconds as only part of them has to be re-calculated. Similarly, the
task probes total evaluation time is 5.29 seconds in scenarios PC and IC,
dropping to 4.30 seconds in CC.

We note that, in this experiment, i) we are considering a sequential execution
of the required probes, but parallelisation is possible in most cases, saving
a significant amount of time; ii) the time requested for the IC assessment is
obviously greater than the others, since it is executing all the probes eval-
uations; iii) the pipeline probe evaluations are particularly efficient as they
only require information already stored in the configuration of the pipeline
instance; iv) the total probes evaluation execution time is negligible com-
pared to time required by the pipe in a Big Data context. Concerning the
CC and IC scenarios, we note that the vulnerability analysis probe P17(r

ψ
7 , ˚)

200

11.5 Assurance Aware Deployment in E2C Continuum

is not included in Figure 11.13 due to its long execution time, approximately
3 minutes, resulting in a strongly unbalanced graph and unreadable bars. We
also note that assurance levels coming from other assessment processes can
be reused in case the targets and the requirements are the same. This is typ-
ically the case of ecosystem services used by different pipelines. Figure 11.13
shows this effect clearly for NC scenario where all the assessment processes
are reused from the previous runs and the total requested time is almost the
one needed for the pipeline only.

11.5 Assurance Aware Deployment in E2C
Continuum

In this section we first describe our experimental settings realizing the sce-
nario in Section 9.1 and then present a preliminary performance evaluation.

11.5.1 Experimental setup

We realized the E2C Continuum of our scenario in Section 9.1 as follows.
The software stack used in the Cloud facility was based on MicroK8s. It al-
lowed to simulate cloud-hosted VPS nodes in a cluster formation supporting
auto-scaling as we expect by a Cloud provider. The Telco-Edge facility was
implemented based on OSM8, Free5GC9 and MicroK8s10, respectively imple-
menting the MEC, a simulated 5G core network, and the resource manager.
OSM was designed to integrate with the core network, exposing the services
hosted in Kubernetes to the users and other nodes as Network Functions.
The on-premises facility was based on MicroK8s, configured to handle lim-
ited resources. All the nodes were hosted in the same data centre, and were
equipped with 4 virtual cores clocked at 2.09 GHz and 32 GB of RAM and
running Linux 5.4.0 (Ubuntu 20.04 LTS). All the nodes of the continuum were
empowered by our deployment agents communicating with our Deployment
Engine using the same virtualised network used by the continuum node.

8https://osm.etsi.org/
9https://www.free5gc.org

10https://microk8s.io

201

https://osm.etsi.org/
https://www.free5gc.org
https://microk8s.io

Chapter 11 Experimental results

Our Deployment Engine was implemented using Python 3.10.9 and has been
executed on a machine running Linux 5.15.102 (NixOS) equipped with an
AMD 5900x and 32 GB of RAM.

11.5.2 Performance evaluation

The computational effort needed to deploy a given service workflow using
our Deployment Engine is clearly dominated by the effort required by our
matching function that can be estimated as O(|F ||S|) where |F | and |S| are
the cardinality of Continuum facilities and services in the workflow respec-
tively.

Figure 11.14 shows the execution time requested by the matching function
varying the number of services si P S in the workflow and the number of facil-
ities fj P F of the continuum using logarithmic scale. The performances were
computed on the average of 5 executions for each combination of services and
facilities. For each execution we randomly generated facilities’ capabilities
and services’ requirements. As expected the number of services |S| domi-
nates the exponential growth of execution time.

The matching algorithm terminates in less than one second when evaluating
the cases of 6 services in 5 facilities and 8 services in 3 facilities. As the num-
ber of services increases, the time of execution grows rapidly: the execution
time with 12 services and 3 facilities is 8.11 s, which is the last experiment
configuration to terminate under 10s. The cases 8 services in 5 facilities and
10 services in 4 facilities terminate respectively in 12.6 s and 22.1 s. With
larger numbers of facilities and services the algorithm becomes too slow for
practical use: the configuration 11 services in 4 facilities terminates in 91.7
s. The last configuration shown in Figure 11.14 considers 12 services in 5
facilities and has terminated in 13143 s.

In this work we described a novel methodology for deploying composed ser-
vices in E2C Continuum focused on guaranteeing advanced QoS require-
ments. The main idea is to exploit the capabilities and the peculiarities
of the different continuum landing platforms to ensure QoS at deployment
time. Our deployment methodology is based on a machine-readable descrip-
tion of the service composition annotated with the QoS requirements and a
meta-description of the capabilities of the landing platforms involved in the

202

11.6 MIND foods Hub Big Data Engine

4 6 8 10 12
Number of services

10 3

10 2

10 1

100

101

102

103

104

Ti
m

e
(s

)
3 facilities 4 facilities 5 facilities

Figure 11.14: Execution time with increasing number of services sj in the
workflow and considering 3, 4 and 5 facilities fj .

continuum. Based on these machine-readable descriptions, a set of feasible
deployment solution are generated and the relative deployment recipes for
the service composition are selected according to a given policy. We show the
feasibility of our solution in our preliminary experimental evaluation. In our
future works, we plan to investigate different deployment optimization solu-
tions and consider a more complex experimental scenario involving migrations
of service and data as well as changes at the network topology level.

11.6 MIND foods Hub Big Data Engine

In this section, we report the preliminary results obtained by our Big Data
Engine implementation in some of its most common use cases. Each bench-
mark simulates a realistic scenario of execution, including data transfers via
mobile network and production-like sized tasks. Figure 11.15 shows a com-

203

Chapter 11 Experimental results

parison of the time necessary for an user to complete each interaction.

1 2 3 4 5
0

2

4

6

8

10

12

14

16

Ti
m

e
[s

]

1 Image thumbnail generation
2 Query historical measurements
3 File retrieval
4 ICON data ingestion
5 Rover data ingestion

Figure 11.15: Performance comparison between common scenarios.

11.6.1 Image thumbnail generation

Image thumbnails are generated for each ingested PNG and PCD files in
order to provide visual guidance to the users. When a supported file type is
uploaded through the API, a thumbnail job is scheduled in the pipeline service
and executed asynchronously. The measured average time of execution for
such jobs is 0.19 seconds, with a standard deviation of 0.009.

11.6.2 Query history of measurements

In this scenario, the user queries the API to retrieve information of physical
measures and the relative metadata. The API retrieves the requested data
from the data lake and returns it in JSON format. The average time of
response for a query collecting the last month measurements for a specific
physical location is 0.31 seconds, with a standard deviation of 0.01.

204

11.6 MIND foods Hub Big Data Engine

11.6.3 File retrieval

The retrieval of a file consists in the process of querying and accessing a file
contained in the storage service through the API. In this scenario, the API
backend acts as a proxy, providing access control and logging capabilities.
The measured average time of retrieval of a 4MB file is 3.18 seconds, with a
standard deviation of 0.48.

11.6.4 ICON data ingestion

The ingestion of data from the ICON IoT platform is handled by a specialized
adapter that monitors a subset of items in the system. When the status of
the items changes, the adapter notifies the update through the engine API,
including any relevant metadata. The measured average time of ingestion of
100 entries is 5.54 seconds, with a standard deviation of 1.59.

11.6.5 Rover data ingestion

This scenario covers the process of upload and ingestion of image files through
the API. An adapter component deployed in the rover sends a request to the
relevant API endpoint, providing a list of files and the relevant metadata.
Then the API backend processes the inputs, saves them in the storage service
and registers the new files’ metadata in the data lake. The measured average
time of ingestion of a 4MB image is 13.76 seconds, with a standard deviation
of 1.79.

205

Chapter 12

Future work

In this thesis, we addressed various issues and gaps detected in E2C contin-
uum deployment infrastructures and methodologies to ensure continuously
provision of advanced NFPs. Our solutions have significantly enhanced the
existing baseline in literature. However, certain new and intricate gaps sur-
faced during implementation. We present here some of the most interesting
and challenging ones.

Transparent observability Current implementation of monitoring solu-
tions for cloud applications are moving towards transparent observability,
with a focus on a standardised and adaptable approach for gathering execu-
tion logs, traces and metrics. The prominent player within the field at present
is Prometheus, an open-source service and protocol that boasts a high rate
of adoption and performance. Our current methodology for incorporating
metrics and probes in our assurance process involves altering the application
source code to integrate our monitoring endpoints and enable the monitoring
probes to access the application state. Adopting an open monitoring stan-
dard, such as Prometheus and OpenTelemetry, would facilitate the extraction
of information from applications that already integrate such standards. In
addition, we might enhance the application to reveal more internal data if
required.

207

Chapter 12 Future work

Multi-layer assurance Application and infrastructure layer assurance only
focus on their respective properties and treat the rest of the execution environ-
ment as black boxes, assuming that you cannot trust other layers’ properties
cannot be trusted. This results in the need for more complex solutions to
achieve the same levels of NFPs. For example, applications could introduce
encryption at the application layer due to the lack of trust in the infrastruc-
ture provider’s commitment to correctly implement data-at-rest encryption.
This has a significant impact on performance, hence increasing costs. The
methodology proposed in Chapter 3 is broad enough to be applied to both
applications and the underlying infrastructures, offering a cohesive assurance
solution for the entire stack. Unfortunately, implementing this solution in
the E2C continuum necessitates cloud providers to furnish more transparent
system information. Consequently, the adoption of transparent observability
by all parties is a prerequisite for this approach.

Assurance-focused VNF The implementation and integration of a ser-
vice specifically designed for assurance purposes would establish the basis for
a transparently verifiable and certifiable network of services. In this scenario,
the Internet Service Provider (ISP) would expose its network monitoring end-
points to an Assurance Layer (AL) that continuously verifies the network and
the Non-Functional Properties (NFPs) of the services, using publicly avail-
able and standardized contracts. While a particular NFP holds, a CA that
trusts the AL may issue a certificate containing the AL evaluation report to
the ISP. Subsequently, a user who trusts the CA can acquire the certificate
from the ISP and be confident that the property of interest is held. The 5G
core network offers a standardised monitoring interface, which enables the
collection of data that is conducive to the validation of NFPs. Examples of
monitoring endpoints comprise the quantity of users connected, the allocated
bandwidth, and service configuration details. Regretfully, certain sensitive
information withholding worth for the verification process ought to remain
within the network. As a resolution, we recommend the expansion of the 5G
core network by integrating an assurance-specific function in its customary
NFs. This function would be able to retrieve the sensitive information and
run the AL verification software. This would provide more useful informa-
tion for the verification process and ensure the privacy of sensitive data. To
achieve this, the new VNF must be formally defined, specifying its interface
and the data it can retrieve from the network.

208

Adaptive deployment infrastructures We demonstrated in chapters 8
and 9 how the deployment of application compositions in the E2C continuum
requires a match between the user-defined SLAs of the deployment configu-
ration and the available infrastructure. It is worth noting that our solution
has the capacity to alter the deployment configuration through the adop-
tion of deployment templates to achieve the required NFP where possible.
In a more advanced deployment system, the service-interface definition pro-
vided in Chapter 3 could be adopted to specify the complete interface of the
component and match the user requirements against several possible imple-
mentations. This approach is compelling in multi-tenant deployments, like
the PaaS in the cloud, allowing the user to select between a CSP-supplied
or self-managed variation of the same service in a transparent manner. The
choice between multiple solutions is limited by the user’s SLA, and the system
optimizes according to user-specified parameters, such as cost. This approach
would be particularly advantageous in the E2C system, as the deployment
manager can identify the most suitable solution based on the available de-
ployment infrastructures, similar to the proposal in Chapter 9.

209

Chapter 13

Related work

In this chapter, we have conducted a systematic literature review to identify
and analyse the relevant publications related to the topics discussed in the
previous chapters. We have summarised the main findings and insights from
the publications and highlighted the gaps and challenges that require further
investigation. Our aim is to provide a comprehensive overview of the state of
the art on the topics of interest and to position our work within the existing
literature.

13.1 Telco Edge Networks

In recent years, researchers are focusing their efforts on the realization of
an efficient and secure cloud to edge continuum infrastructure, to improve
latency, reliability, throughput, and efficiency of networks and distributed
services [119]. More and more, we can see how several networks and the cloud
computing are converging into a unified and coherent continuum, exploiting
the host peculiarities, such as locality to the user, high availability and global
coverage. Zhao et al. gave a clear representation of all the various aspects
of edge computing and networking in [120], including their relationship with
Fog computing and MEC, the various technologies available, the processes
used for service provisioning and other security and optimisation aspects.

211

Chapter 13 Related work

In such an infrastructure, the orchestration of services has the fundamental
role of deciding which deployment configuration is best suited for the re-
quested work, aiming to ensure the agreed SLOs, and monitoring and updat-
ing the state of the system if a better approach is possible. Researchers have
proposed smarter orchestrators that better integrate their function with edge
data-centres, moving part of the load to localized infrastructures [121–123],
or even on mobile devices [124], based on the capabilities of the nodes and
the dynamic load of the system, thus creating the base components of E2C
continuum.

With the advent of 5G technologies, researchers pushed the idea of moving
part of the services directly to the core network [125]. This kind of hybrid
deployment allows for further distribution of the load on a geographical level
and to apply transformations to the data before it leaves the network, sub-
stantially reducing the network usage and improving latency for locally hosted
services.

Additional effort has been put into the standardization of mobile-edge service
deployments, with the introduction of MEC, and the definition of a specifica-
tion format for describing their SLOs. The additional complexity introduced
pushed the researchers to generalize orchestrators to handle the multiple lev-
els of the infrastructure, including optimizations of network communication
and caching strategies [101,126–128].

The field of continuum computing involving 5G is still in its infancy and its
complexity leaves a large number of open questions for further research, in-
cluding privacy and security concerns, scheduling optimizations, monitoring
solutions, and how developers will embrace this technology in their solu-
tions.

5G and other more specialised networks, such as satellite, are converging into
cohesive and complete solutions that simplify the management and config-
uration of communications, especially in the case of private networks. In
their study [129], Wang et al. highlight the increasing demand from users
for effective communication and worldwide coverage, particularly in remote
regions that are not serviced by commonly available networks. This inte-
gration offers numerous advantages, such as uninterrupted service provision
and accessibility to network-enabled services, as well as the utilization of the
well-established and commonly used MEC of 5G networks for network man-
agement. Additionally, it ensures dependable security for data, network and

212

13.1 Telco Edge Networks

computing.

Satellites are commonly viewed as a network of relay nodes, but they also have
the potential to be equipped with sufficient computing capabilities to act as
a target of interest for edge deployments of applications. In Xie et al.’s [130]
study, they investigate the potential of satellites within the MEC architec-
ture and highlight its significant benefits. The satellite serves as a storage
node for a CDN, offering the ability to cache content. Satellite computation
capabilities can be used for computation offloading, which reduces latency by
executing applications that would otherwise have to be deployed in the cloud.
Network services can dynamically adjust the network topology through SDN
depending on connection availability to optimize performance.

In [131], the recent advances in edge computing for IoT networks are thor-
oughly described, highlighting how cloud and edge computing resources can
be strategically utilised to decrease latency and network usage. This in-
volves bringing general-purpose computing capabilities, which are not usually
present in IoT devices, as close as possible to the devices for features such as
ML-based capabilities. Abbreviations for technical terms are explained upon
first use. Hamdam et al. suggest that proximity-based preprocessing of IoT
data can significantly decrease the amount of data that needs to be transmit-
ted to the remote cloud-centric destination, minimizing bandwidth consump-
tion. They also identify several limitations of E2C platforms intended for
IoT, which include security concerns regarding data confidentiality, integrity,
and availability, as well as scalability, device updates, and interoperability
issues.

In [132], the focus is on managing IoT networks using SDN, as it is partic-
ularly useful for controlling large fleets of Internet-connected devices with
stringent security and performance requirements. The paper presents a com-
prehensive overview of the network layers that IoT traffic traverses, with a
particular emphasis on the lower and more critical layers. The survey fo-
cuses on ensuring that network components deployed in E2C networks are
secure from malicious adversaries, with the details of implementation and
deployment left as abstraction for the E2C continuum solution.

In Rinaldi et al.’s study [133], additional types of network nodes are incorpo-
rated into the E2C continuum infrastructure, with UAVs and High-Altitude
Platforms (HAPs) pinpointed as feasible edge platforms for temporary de-
ployments that possess intermediary capabilities between terrestrial networks

213

Chapter 13 Related work

(e.g. 5G) and satellite networks. These solutions would offer comparable
computing capabilities to satellites, but without the restrictions imposed by
the space environment. They also provide lower latency and extensive cov-
erage of a large geographical area, ranging from 5 to 200 km. The authors
present a comprehensive analysis of existing inter-network communication
and management solutions. Particularly noteworthy is the examination of
roaming behaviour between networks of different types and partially covered
regions.

13.2 Assurance for CDN networks

The convergence of managing application deployments, computing infras-
tructure, networking and data caching in the E2C requires more than ever
strong guarantees of performance, security and other advanced NFPs. Wang
et al. [134] offer a very clear picture of the different typical infrastructures
of the continuum and how data caching is affected by their peculiarities.
Zolfaghari et al. [135] show similar results, describing the state of the art of
CDNs and how data distribution is adapting to the newly available technolo-
gies and techniques enabled by the E2C continuum to improve performance
and reduce costs. Both surveys highlight how the locality of edge networks
provide the means for fine grained distribution of data based on local content
popularity. This information can be exploited by E2C deployment systems
enabling smarter management of resources, predictive preallocation of the
data and in loco transformations, such as transcoding of video files and data
filtering.

Certification methodologies have been successfully applied in many context
including software and services. Anisetti et al. [50] proposed a formal certifi-
cation scheme to validate NFPs cloud-based services. Ardagna et al. [136] de-
scribed a lightweight certification methodology for cloud environments, sup-
ported by continuous monitoring of infrastructures, platforms and services.
Stephanow at al. [52] described a test-based certificate solution to identify
whether a CSP assured quality levels match the real measurements to prevent
fraudulent and opportunistic behaviours. Felici at al. [53] proposed a multi-
layer security certification scheme based on testing and monitoring probes.
The notion of certification have been rarely applied in the past to verify net-
working protocols and nodes. Wu at al. [137] and Bossert at al. [138] applied

214

13.3 Assurance in Big Data Analysis Platforms

certification to generic network security evaluation. They based their paper
on Common Criteria certification model which has severe limits in dynamic
environment. Network monitoring, is one of the prominent way to keep con-
trol of the networking traffic and behaviour and can be used for obtaining
evidence for Certification. Monitoring in ICN networks has been extensively
covered in literature, with particular emphasis on security of the network.
In [44, 139] the authors proposed a monitoring plane for NDN with the goal
of identifying network traffic anomalies and prevent content poisoning at-
tacks. Another interesting solution is the one proposed by Van Adrichem at
al. [140], which presented an implementation of an SDN layer for monitoring
and traffic shaping in NDN. More recently, research has focused evaluating
both networking nodes and protocols [141, 142]. Zhou et al. [141] presented
a network-behaviour monitoring schema aimed to identify congestion. Bialas
et al. [142] presented a monitoring technique focused on anomaly detection.

Even if monitoring of ICN and trust in general is receiving an increasing
attention by researchers, the certification in ICN networks still a quite un-
explored topic. In this paper we extend our previous work in [55] that from
the best of our knowledge constitute the first attempt to apply certification
framework for ICN nodes using a rule-based schema.

13.3 Assurance in Big Data Analysis Platforms

The last decade has seen the rapid growth in the usage of Big Data in a large
number of fields, like Cybersecurity [64], Smart Cities [143], Smart Agricul-
ture [144–146]. The complexity of computations and service deployments
are growing rapidly with the increase in heterogeneity of the deployment
environments, including E2C continuum [27, 119] and hybrid cloud infras-
tructures [147].

This trend is followed by the awareness of the necessity of protecting the data
and its by-products with transparent and comprehensive techniques of secu-
rity assurance. The most straightforward approach taken into consideration
to address these necessities was based on the integration of security policies in
the Big Data processes in order to mitigate or prevent risks originated by the
mishandling of data [148]. Some initial security assurance techniques focused
on Big Data targeted primarily on securing the stored data [149–152] and only

215

Chapter 13 Related work

later expanded to a wider definition that includes its handling in the form
of data pipelines [77], securing them according to the CIA (Confidentiality,
Integrity, Availability) triad [153–155]. This includes security measures like
access control policies on the resources and network isolation of the services.
However, these security hardening solutions are not enough to cope with dy-
namicity of Big Data as a service scenario. The complex structure and variety
of the stored data reflect an even more diverse usage of the information con-
tained. Lack of a complete understanding of the security aspects of all the
stored data may expose the users to significant risks [155]. Users personal
data may be protected by a policy that prevents a malicious actor to ac-
quire all their records, but it may still be possible to deanonymise them from
leaky statistical data if, for instance the k-anonymity property is not properly
enforced [156,157]. The growth of high-sensitive data (i.e., financial, health-
care) and the introduction of privacy focused regulations like the GDPR and
the California Consumer Privacy Act (CCPA) pushed towards the inclusion
of Privacy in the primary aspects of the security assurance [152, 153, 158].
Emphasizing how breaches may occur at any step in the pipeline [159]. Re-
searchers highlighted the necessity of automated processes to ensure compli-
ance with privacy regulations [77] and high performance [158]. Due to the
size and complexity of the systems, monitoring has been the primary ap-
proach applicable to defend Big Data applications according to Elsayed et
al. [160]. More advanced techniques include continuous monitoring of the
behaviour of the data handlers, in order to identify malicious or unexpected
actions [64, 65]. Additional security mitigations solutions adopted anomaly
detection techniques to detect model poisoning [161] or advanced access con-
trol and storage monitoring [162], although their focus is especially localized
and small. Security assurance, on the other hand, enables its users to ad-
dress privacy and security concerns by actively testing the whole Big Data
pipeline environment, its configuration and its behaviour, verifying a target
set of NFPs demonstrating if the applied countermeasures are effective [66].
The literature is lacking in this particular aspect of assurance, while more
focus is given to the evaluation of quality of the systems, the models and the
data, as in [70,163,164].

Table 13.1 shows a comparison with the most closely related works in terms
of offered assurance capabilities (full and partial support are denoted with 3
and „ respectively). More specifically we consider: i) Pipeline evaluation (P),
indicating the capability to inspect pipeline properties (e.g., applying code
analysis techniques); ii) Ecosystem evaluation (E), indicating the capability
to check services at ecosystem level (e.g., configuration checks); iii) Holistic

216

13.3 Assurance in Big Data Analysis Platforms

Table 13.1: Related work comparison. P: pipeline evaluation, E: ecosystem
evaluation, H: holistic evaluation approach, A: automation of
evaluation, I: inspectability.

Reference (year) P E H A I
G. Manogaran et al. (2016) [64] „ 3 3

P. P. Sharma et al. (2014) [65] „ 3 3

M. Anisetti et al. (2021) [71] 3 3

D. Yadav et al. (2019) [151] „ 3

M. Khan et al. (2019) [152] 3 „

L. Wang et al. (2019) [77] „ 3 3 „

S. Kavitha et al. (2015) [156] 3

A. Mehmood et al. (2016) [159] 3 „

M. Elsayed et al. (2018) [160] „ 3 „ „

G. Ra et al. (2021) [162] 3 „

Ours 3 3 3 3 3

Evaluation (H), indicating the capability to combine multiple sources of in-
formation to present an overall evaluation of the entire Big Data solution;
iv) Automation (A), indicating whether the system is fully automated and
supports continuous verification of the target; v) Inspectability (I), indicat-
ing the capability to inspect the internal status of the system in depth. We
note that most of the related solutions focus on the evaluation of services at
ecosystem level [64, 65, 77, 151, 152, 159, 162], searching for misconfiguration
and abnormal behaviours, while very few of them try to address pipeline and
in most of the cases just partially [71,77,151,160] which is custom and more
complex to evaluate. We also note that most of the solutions proposed in
literature [64, 65, 77, 151, 152, 159, 162] focus on detecting very specific prob-
lems and just some of them [77,152,156,159,160,162] on providing an holistic
evaluation on the entire system but just for some specific NFPs. Consid-
ering automation and inspectability, most of the actual solutions are fully
customized on a given system and for specific properties missing the need of
generality [64,65,71,77,160].

217

Chapter 13 Related work

13.4 Assurance Aware Deployment in E2C
Continuum

To the best of our knowledge, there is currently no deployment architecture
capable of providing a comprehensive and adaptable approach to the persis-
tent deployment of services in the continuum, taking into account customer-
defined advanced properties and constraints. Few solutions exist for appli-
cation deployment, which are compared in Table 13.2 with respect to the
above requirements (full and partial support of a requirement is denoted
with 3 and „ respectively). Some considered works ([97, 121, 122, 165])
address the E2C Continuum scenario, but only the architecture presented
in [165] can seamlessly deploy applications along the Continuum since it is
fully independent of the specific technology and CSP involved. QoS require-
ments and constraints are taken in account, even partially, by most of the
works ([94,98,104,121,165,166]), but only [121,166] provide a comprehensive
way to model both applications and environment. Finally, there is no solu-
tion that performs a life-cycle management of the deployment, adapting to
changes in context. In short, all solutions have drawbacks, whether they be
the limited application scenario, the dependence on specific technologies, or
the inadequate composition model. Our architecture, instead, addresses all
the aforementioned requirements, providing a QoS-driven deployment system
for the Continuum.

13.5 Experimental scenario: MIND Foods
HUB

Big-data techniques have seen a significant increase in popularity in the last
decade, especially in fields of research producing large quantities of experi-
mental data. The literature has numerous examples of applications in agron-
omy. Continuous monitoring of multiple aspects of the cultivation life cycle al-
lows the agronomist to produce clear and useful visualizations, like presented
in [167, 168]. Cultivation data can also be used to experimentally asses risk,
as in [146], enabling and supporting precision agriculture techniques. The
solutions proposed in [145,169,170] use the collected data to take preventive
action in a localized manner. Data collection and prevention operations can

218

13.5 Experimental scenario: MIND Foods HUB

Table 13.2: Related work comparison.

Author Ref. R1 R2 R3 R4 R5 R6

K. Fu et al. [122] 3 3 „

A. Orive et al. [121] 3 „ 3 3

A. Brogi et al. [166] „ 3 3

V. Casola et al. [165] 3 3 3 3

S. Nastic et al. [97] 3 3

N. Akhtar et al. [94] „ 3 3 „

A. Das et al. [96] 3 3 3

M. Anisetti et al. [104] 3 3

J. Quenum et al. [98] 3 3 3

Our Work 3 3 3 3 3 3

be automated using unmanned aerial systems, as demonstrated in [170]. IoT
based solutions are particularly effective data sources in the field, providing
valuable information at a relatively low price [171, 172]. The integration of
IoT devices in big-data solutions has been previously studied, like in [173]
and [174] The infrastructure proposed can be successfully applied to most
research fields with minimal changes. More recently, the trend of migration
to cloud solutions provides benefits on the availability of both the data and
the computation resources [174].

219

Chapter 14

Conclusions

In this final chapter we summarised the main findings and contribution de-
scribed in the previous chapter, discuss the implications and limitations of
this work with regards to the gaps identified in Section 2.4.

In Chapter 2 we provided a comprehensive analysis of E2C infrastructures,
highlighting how they differ from the more traditional cloud deployments,
enumerating the most important technologies in use and their position in
the ecosystem. Followed a description of deployment management solutions,
including intent-based solutions.

In Chapter 3 we showed how NFPs and their verification play a crucial role
in offering robust assurances of QoS to end-users in intricate deployment
circumstances, where diverse hosts, technologies, and standards must collab-
orate seamlessly. To achieve this, we developed an assurance methodology
for E2C infrastructures that can model complex scenarios and provide evi-
dence to validate advanced NFPs, such as security, privacy, and locality. By
using service-level modelling and transparent monitoring, our methodology
overcomes the limitations of other solutions in the literature, which model
deployments at a coarser component level, preventing the reuse of metrics
and contracts, and failing to compare the implementation of the same ser-
vice. Furthermore, they concentrate on performance aspects, whereas ours is
more generalizable. Our solution addresses the gaps 2.4, 2.4 and 2.4 defin-
ing a clear and complete methodology for continuous verification of NFP
through transparently collected evidence and publicly available contracts.

221

Chapter 14 Conclusions

The methodology also provides a clear solution for Gap 2.4 using a strict
assurance process.

Chapter 4 analyses telco edge networks, their particularities and their ap-
plication in the E2C continuum. The chapter investigates 5G, satellite, and
IoT networks, with particular emphasis on mobile networks and their im-
plementation, standards, and components. In this chapter, we provided a
comprehensive account of constructing a fully operational 5G simulator that
comes with high-end MEC abilities and improves current solutions for 5G
edge deployments.

In Chapter 5, we explained how to implement our assurance methodology on
edge networks, with emphasis on 5G due to its more stable and widespread us-
age. Our research unveiled unique non-functional properties of the standard
5G core network and currently missing functionalities for their verification.
In Chapter 11, we provided a throughout example for the definition of met-
rics, monitoring endpoints, contracts for properties of interest in a 5G edge
network with MEC capabilities.

One of the most prevalent uses of edge networks are CDNs. In Chapter 6,
we described CDNs and showed how to build an efficient implementation in
a NDN network using the ICN paradigm. Additionally, we demonstrated
how our assurance methodology can be applied to this system, resulting in
a decentralized and collaborative solution for assurance in NDN networks.
In Chapter 11, the capabilities of this implementation were demonstrated
through experimental evaluation of its performance in a simulated network.

In Chapter 7 we showed a real-world application of our approach in the frame-
work of a security evaluation of the H2020 EVOTION Big-Data-Analytics-
as-a-Service platform, later applied to the MIND Foods Hub project. Our ex-
perimental evaluation of the proposed solution, reported in Chapter 11 and
implemented in the framework of the experimental scenario in Chapter 10
identified a number of gaps to be addressed. In particular, it showed i) how
difficult is to keep control over NFPs in a system with custom parts (i.e., the
pipeline code); ii) how complex is the configuration of a Big Data ecosystem
increasing the possibility of misconfiguration, and iii) what is needed to have
a real generic open platform for trusted Big Data computation.

Chapter 8 examines the issue of ensuring NFP in 5G edge deployment infras-
tructures, demonstrating that continuous assurance offers robust guarantees

222

to platform users. We demonstrated how an assurance-aware deployment is
instantiated in a MEC-enabled 5G network. Our solution aimed to efficiently
and effectively deploy analytics pipelines in the 5G-enabled Edge continuum,
while considering users’ requirements and preferences, resource characteris-
tics and limitations, and environmental dynamics and uncertainties. We also
detailed the specification of advanced user-defined SLAs and how they can be
integrated with the deployment specification standards already available.

Chapter 9 explained the development of an assurance-aware deployment so-
lution for distributed environments. This solution guarantees strong NFPs in
any infrastructure, by matching available host properties with user-defined
SLAs of the application composition. Chapter 11 presents experimental data
on the performance of the proof-of-concept implementation of our deployment
matching solution. The combination of assurance aware infrastructures and
deployments provides a solution to gap 2.4, allowing automated deployment
of applications while guaranteeing strong NFPs.

In Chapter 10, we presented the real-world application scenario that was used
to experimentally evaluate our methodology in its different implementations.
The project involved designing, implementing and deploying a big data engine
with continuous analysis and CDN capabilities in an E2C setting. In Chap-
ter 11, we detailed the performance results of our system in typical usage
scenarios.

The combination of infrastructure assurance, described in Chapter 3, and de-
ployment assurance, analysed in Chapter 8, addresses the gap 2.4 providing
a coherent and complete methodology for the continuous verification of ro-
bust user-defined SLAs based on NFP, evidence collected through transparent
monitoring and publicly available contracts.

The results obtained demonstrated the feasibility of the proposed assurance
methodology, which offers strong assurance with low overhead. We have
shown how the introduction of such techniques into the management of E2C
infrastructures and deployments can bring significant benefits to their users.
The application of assurance solutions in this area is still in its infancy, but
the reception from the academic community and industry has been positive,
and we expect to see solid progress in the coming years.

223

Appendix A

Publications

[175]
Title: Script Language Security
Authors: Ardagna, Claudio A. and Damiani, Ernesto and Berto, Filippo
Book: Encyclopedia of Cryptography, Security and Privacy, pp. 1–3
Year: 2023

[23]
Title: An assurance process for Big Data trustworthiness
Authors: Anisetti, Marco and Ardagna, Claudio A. and Berto, Filippo
Journal: Future Generation Computer Systems, pp. 34–46
Year: 2023
Abstract: Modern (industrial) domains are based on large digital ecosys-
tems where huge amounts of data and information need to be collected,
shared, and analyzed by multiple actors working within and across organiza-
tional boundaries. This data-driven ecosystem poses strong requirements on
data management and data analysis, as well as on data protection and sys-
tem trustworthiness. However, although Big Data has reached its functional
maturity and represents a key enabler for enterprises to compete in the global
market, the assurance and trustworthiness of Big Data computations (e.g.,
security, privacy) are still in their infancy. While functionally appealing, Big
Data does not provide a transparent environment with clear non-functional
properties, impairing the users’ ability to evaluate its behavior and clashing
with modern data-privacy regulations. In this paper, we present a novel as-
surance process for Big Data, which evaluates the Big Data pipelines, and

225

Appendix A Publications

the Big Data ecosystem underneath, to provide a comprehensive measure of
their trustworthiness. To the best of our knowledge, this approach is the
first attempt to address the general problem of Big Data trustworthiness in
an holistic way. We experimentally evaluate our solution in a real Big Data
Analytics-as-a-Service environment, first presenting a detailed walkthrough
evaluation, and then showing its feasibility and negligible performance over-
head (i.e., approx 1 min).

[176]
Title: QoS-aware Deployment of Service Compositions in 5G-empowered
Edge-Cloud Continuum
Authors: Anisetti, Marco and Berto, Filippo and Bondaruc, Ruslan
Book: 2023 IEEE International Conference on Cloud Computing (CLOUD),
(to appear)
Year: 2023
Abstract: Nowadays, modern service compositions are increasingly adopted
in critical scenarios where advanced Quality of Services (QoS) such as low la-
tency, security, and privacy are fundamental. The landing platforms for the
deployment of such compositions are progressively becoming capable to of-
fer capabilities that support such advanced QoS requests (e.g., low latency
via 5G network slice) spanning the Edge-Cloud Continuum. Actual deploy-
ment solutions focus mainly on resource allocation (i.e., CPU, memory, and
storage), falling short of addressing advanced QoS and unleashing the true
potential of the Edge-Cloud Continuum. In this paper, we present an au-
tomatic QoS-aware deployment solution for composed services in the Edge-
Cloud Continuum. It compares QoS requests on the service composition
with the capabilities of a given continuum in order to find, generate and ex-
ecute suitable deployment recipes. Our preliminary experimental evaluation
demonstrates the feasibility of our solution in a realistic scenario.

[144]
Title: A 5G-IoT enabled Big Data infrastructure for data-driven agronomy
Authors: Berto, Filippo and Ardagna, Claudio and Torrente, Marco and
Manenti, Daniele and Ferrari, Enrico and Calcante, Aldo and Oberti, Roberto
and Fra’, Cristina and Ciani, Luca
Book: 2022 IEEE Globecom Workshops (GC Wkshps), pp. 588–594
Year: 2022
Abstract: The increasing necessity of efficient and effective agriculture

226

has pushed towards the development of computer aided techniques, where
on-field measurements are used to take objective decisions to optimize the
production, giving birth to data-driven agronomy. With the diffusion of 5G-
based IoT devices it becomes possible to deploy a variety of sensors in large
amounts, enabling continuous collection of monitoring data. Agronomists
necessitate the adoption of Big Data techniques and technologies to handle
such large amount of data. These solutions provide powerful tools to analyze
and model the complexity of the field, i.e. applying statistics and Machine
Learning based methods to the product processes. In this paper, we propose
a Big Data infrastructure that integrates with 5G-enabled sensors, providing
scalable data ingestion, pipelining and information querying capabilities. We
also show a practical scenario where our infrastructure has been implemented
and report preliminary results on its performance.

[6]
Title: A Security Certification Scheme for Information-Centric Networks
Authors: Anisetti, Marco and Ardagna, Claudio A. and Berto, Filippo and
Damiani, Ernesto
Journal: IEEE Trans. Netw. Serv. Manage., pp. 2397–2408
Year: 2022
Abstract: Information-Centric Networking is an emerging alternative to
host-centric networking designed for large-scale content distribution and stricter
privacy requirements. Recent research on Information-Centric Networking fo-
cused on the protection of the network from attacks targeting the content de-
livery protocols, while assuming genuine content can always be retrieved from
trustworthy nodes. In this paper, we depart from the assumption of the trust-
worthiness of network nodes and propose a novel certification methodology
for informationcentric networks that supports continuous security verification
of non-functional properties. Our methodology provides a complete and de-
tailed view of the network security status, increasing the trustworthiness of
the network and its services. The proposed approach builds on an enhanced
certification model capturing the evolution of the system over time. It also
defines certification services that fully integrate with existing networks to
collect evidence on the target of certification and carry out the certification
process. It finally proposes two certification processes, centralized and decen-
tralized, balancing the impact on the network and the system performance.
Efficiency, performance, and soundness of our approach are experimentally
evaluated in a simulated Named Data Networking (NDN) network targeting
property availability.

227

Appendix A Publications

[27]
Title: Orchestration of data-intensive pipeline in 5G-enabled Edge Contin-
uum
Authors: Anisetti, Marco and Berto, Filippo and Banzi, Massimo
Book: 2022 IEEE World Congress on Services (SERVICES), pp. 2–10
Year: 2022
Abstract: Nowadays there is an increasing trend in the volume and ve-
locity of data, typically consumed by data-intensive AI/ML-based services,
requiring a larger diffusion of more effective Edge computing approaches. In
addition, we are experiencing an increment of critical applications using an in-
creasing volume of sensitive data and requiring advanced security and privacy
protections. 5G Edge technology can foster a more diffused Edge computing
adoption but several challenges in terms of interoperability. Handling data-
intensive pipelines on the 5Genabled Edge continuum, considering specific
QoS requirements including security and privacy, is still in its infancy. In this
paper, we propose an initial solution for deploying a data-intensive pipeline
in a 5G-enabled Edge continuum satisfying specific QoS requirements. Our
approach is based on a QoS-aware meta orchestration modeling of a given
pipeline and an orchestration builder generating deployable Edge-specific or-
chestrations. In this paper, we also present an initial walkthrough scenario in
the context of a wet lab analysis pipeline to be deployed on the 5G-enabled
Edge continuum.

[24]
Title: A DevSecOps-based Assurance Process for Big Data Analytics
Authors: Anisetti, Marco and Bena, Nicola and Berto, Filippo and Jeon,
Gwanggil
Book: 2022 IEEE International Conference on Web Services (ICWS), pp.
1–10
Year: 2022
Abstract: Today big data pipelines are increasingly adopted by service ap-
plications representing a key enabler for enterprises to compete in the global
market. However, the management of non-functional aspects of the big data
pipeline (e.g., security, privacy) is still in its infancy. As a consequence, while
functionally appealing, the big data pipeline does not provide a transparent
environment, impairing the users’ ability to evaluate its behavior. In this
paper, we propose a security assurance methodology for big data pipelines

228

grounded on the DevSecOps development paradigm to increase trustworthi-
ness allowing reliable security and privacy by design. Our methodology mod-
els and annotates big data pipelines with non-functional requirements verified
by assurance checks ensuring requirements to hold along with the pipeline life-
cycle. The performance and quality of our methodology are evaluated in a
real walkthrough analytics scenario.

[55]
Title: Security Certification Scheme for Content-centric Networks
Authors: Anisetti, Marco and Ardagna, Claudio A and Berto, Filippo and
Damiani, Ernesto
Book: 2021 IEEE International Conference on Services Computing (SCC),
pp. 203–212
Year: 2021
Abstract: Content-centric networking is emerging as a credible alternative
to host-centric networking, especially in scenarios of large-scale content dis-
tribution and where privacy requirements are crucial. Recently, research on
content-centric networking has focused on security aspects and proposed solu-
tions aimed to protect the network from attacks targeting the content delivery
protocols. Content-centric networks are based on the strong assumption of
being able to access genuine content from genuine nodes, which is however
unrealistic and could open the door to disruptive attacks. Network node
misbehavior, either due to poisoning attacks or malfunctioning, can act as a
persistent threat that goes unnoticed and causes dangerous consequences. In
this paper, we propose a novel certification methodology for content-centric
networks that improves transparency and increases trustworthiness of the
network and its nodes. The proposed approach builds on behavioral analy-
sis and implements a continuous certification process that collects evidence
from the network nodes and verifies their non-functional properties using
a rule-based inference model. Utility, performance, and soundness of our
approach have been experimentally evaluated on a simulated Named Data
Networking (NDN) network targeting properties availability, integrity, and
non-repudiation.

229

Appendix A Publications

[177]
Title: Spatial bloom filter in named data networking: a memory efficient
solution
Authors: Berto, Filippo and Calderoni, Luca and Conti, Mauro and Lo-
siouk, Eleonora
Book: Proceedings of the 35th Annual ACM Symposium on Applied Com-
puting, pp. 274–277
Year: 2020
Abstract: Among the possible future Internet architectures, Information
Centric Networking (ICN) is the most promising one and researchers working
on the Named Data Networking (NDN) project are putting efforts towards
its deployment in a real scenario. To properly handle content names, the
different components of an NDN network need efficient and scalable data
structures. In this paper, we propose a new data structure to support the
NDN forwarding procedure by replacing the current Forwarding Information
Base (FIB): the Spatial Bloom Filter (SBF), a probabilistic data structure
that guarantees fast lookup and efficient memory consumption. Through a
set of simulations run to compare the performance of FIB and SBF, we found
that the latter uses less than 5 KB of data to handle 106 queried interests, with
a (negligible) probability 10-4 of false positive events. Conversely, the FIB
requires up to 2.5 GB of data in disadvantageous cases, e.g. when interests
are composed of a considerable number of components.

230

Acronyms

5G-PPP 5G Infrastructure Public
Private Partnership.

5GS 5G System.

AA Assurance Agent.
ACL Access Control List.
AF Application Function.
AI Artificial Intelligence.
AL Accredited Lab.
AMF Access and mobility Manage-

ment Function.
API Application Programming In-

terface.
ARP Address Resolution Proto-

col.
AUSF Authentication Server Func-

tion.
AWS Amazon Web Services.

BNF Backus-Naur Form.
BSS Business Support System.

CA Certification Authority.
CCPA California Consumer Privacy

Act.
CDN Content Distribution Net-

work.
CN Core Network.
CNF Cloud-native Network Func-

tion.

CP Control Plane.
CPU Central Processor Unit.
CRUD Create, Read, Update,

Delete.
CS Content Store.
CSMF Communication Service

Management Function.
CSP Cloud Service Provider.
CVSS Common Vulnerability Scor-

ing System.

DAG Directed Acyclic Graph.
DHCP Dynamic Host Configuration

Protocol.
DN Data Network.
DNS Domain Name System.
DOS Denial Of Service.

E2C Edge-Cloud.
EAP Extensible Authentication Pro-

tocol.
ETSI European Telecommunications

Standards Institute.

FaaS Function as a Service.
FHIR Fast Health Interoperable Re-

sources.
FL Federated Learning.
FTTH Fibre to the Home.

231

Acronyms

GDPR General Data Privacy Regu-
lation.

GEO Geostationary Earth Orbit.
GLB Greatest Lower Bound.
gNB gNodeB.
GSMA GSM Association.
GUI Graphical User Interface.

HAP High-Altitude Platform.
HTTP HyperText Transfer Proto-

col.

IaaS Infrastructure as a Service.
IBN Intent Based Networking.
IBS Intent Based System.
ICMP Internet Control Message

Protocol.
ICN Information Centric Network-

ing.
IETF Internet Engineering Task

Force.
IM Information Model.
IMEI International Mobile Equip-

ment Identity.
IoT Internet of Things.
IP Internet Protocol.
ISP Internet Service Provider.
ITU International Telecommunica-

tion Union.

KPI Key Performance indicator.

LADN Local Area Data Network.
LEO Low Earth Orbit.
LIDAR Laser Imaging Detection

and Ranging.
LRU Least Recently Used.
LUB Least Upper Bound.

MANO MANagement and Orches-
tration.

MEAO Mobile Edge Application Or-
chestrator.

MEC Multi-access Edge Comput-
ing.

MEO Medium Earth Orbit.
MEP Mobile Edge Platform.
MEPM Mobile Edge Platform Man-

ager.
ML Machine Learning.
MQTT Message Queuing Telemetry

Transport.

NAS Non-access stratum.
NBI North Bound Interface.
NDN Named Data Networking.
NEF Network Exposure Function.
NF Network Function.
NFP Non-Functional Property.
NFV Network Function Virtualisa-

tion.
NGMN Next Generation Mobile

Networks.
NIST National Institute of Stan-

dards and Technology.
NLSR Named Data Link State

Routing.
NRF Network Repository Func-

tion.
NS Network Slicing.
NSSAI Network Slice Selection As-

sistance Information.
NSSF Network Slice Selection Func-

tion.
NSSMF Network Slice Subnet Man-

agement Function.
NWDAF Network Data Analytics

Function.

O-RAN Open-Radio Access Net-
work.

232

Acronyms

OAIC Open AI Cellular.
OSM Open Source MANO.
OSS Operational Support System.

PA Precision Agriculture.
PaaS Platform as a Service.
PCF Policy Control Function.
PDU Protocol Data Unit.
PIT Pending Interest Table.
PKI Public Key Infrastructure.
PoP Point of presence.

QoS Quality of Service.

RAN Radio Access Network.
RAS Reliability, Availability, and

Serviceability.
RCS Rich Communication Ser-

vices.
RIC Ran Intelligent Controller.
RTT Round Trip Time.

S3 Simple Storage Service.
SCP Service Communication

Proxy.
SDN Software Defined Network.
SIM Subscriber Identity Module.
SLA Service Level Agreement.
SLO Service Level Objective.

SMF Session Management Func-
tion.

SMS Short Message Service.
SNMP Simple Network Manage-

ment Protocol.
SoC System-on-a-Chip.

TCP Transmission Control Proto-
col.

UAV Unmanned Aerial Vehicles.
UDM Unified Data Management.
UDR Unified Data Repository.
UE User Equipment.
UP User Plane.
UPF User Plane Function.

VIM Virtualisation Infrastructure
Manager.

VM Virtual Machine.
VN Virtualised Network.
VNF Virtualised Network Func-

tion.
VNFD Virtualised Network Func-

tion Descriptor.
VNFO Virtualised Network Func-

tion Orchestrator.
VPN Virtual Private Network.
VPS Virtual Private Server.

233

Bibliography

[1] G. He, X. Liao, and C. Liu, “A Security Survey of NFV: From Causes
to Practices,” in 2023 3rd International Conference on Consumer Elec-
tronics and Computer Engineering (ICCECE), Jan. 2023, pp. 624–628.

[2] S. Sultan, I. Ahmad, and T. Dimitriou, “Container Security: Is-
sues, Challenges, and the Road Ahead,” IEEE Access, vol. 7, pp.
52 976–52 996, 2019, conference Name: IEEE Access.

[3] K. E. Narayana and K. Jayashree, “Survey on cross virtual machine side
channel attack detection and properties of cloud computing as sustain-
able material,” Materials Today: Proceedings, vol. 45, pp. 6465–6470,
Jan. 2021.

[4] W. Xiong and J. Szefer, “Survey of Transient Execution Attacks and
Their Mitigations,” ACM Comput. Surv., vol. 54, no. 3, pp. 54:1–54:36,
May 2021.

[5] C. Shen, C. Chen, and J. Zhang, “Micro-architectural Cache Side-
Channel Attacks and Countermeasures,” in Proceedings of the 26th Asia
and South Pacific Design Automation Conference, ser. ASPDAC ’21.
New York, NY, USA: Association for Computing Machinery, Jan. 2021,
pp. 441–448.

[6] M. Anisetti, C. A. Ardagna, F. Berto, and E. Damiani, “A Security
Certification Scheme for Information-Centric Networks,” IEEE Trans.
Netw. Serv. Manage., vol. 19, no. 3, pp. 2397–2408, Sep. 2022.

[7] “5G Observatory Biannual Report: April 2023,” Directorate-General

235

Bibliography

for Communications Networks, Content and Technology, Tech. Rep. 18,
Apr. 2023.

[8] “European FTTH/B Market Panorama 2023,” FTTH Council Europe,
Tech. Rep., Apr. 2023.

[9] ETSI, “System architecture for the 5G System (5GS) (3GPP TS 23.501
version 16.6.0 Release 16),” ETSI ISG, Tech. Rep. ETSI TS 123 501
V16.6.0, Oct. 2020.

[10] I. Alawe, A. Ksentini, Y. Hadjadj-Aoul, and P. Bertin, “Improving Traf-
fic Forecasting for 5G Core Network Scalability: A Machine Learning
Approach,” IEEE Network, vol. 32, no. 6, pp. 42–49, 2018, publisher:
IEEE.

[11] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computing - A key technology towards 5G,” ETSI white paper,
vol. 11, no. 11, pp. 1–16, 2015.

[12] ETSI, GS MEC 003 Multi-access Edge Computing (MEC); Framework
and Reference Architecture, V3.1.1, Mar. 2022.

[13] S. Kekki, W. Featherstone, Y. Fang, P. Kuure, A. Li, A. Ranjan,
D. Purkayastha, F. Jiangping, D. Frydman, G. Verin, and others,
“MEC in 5G networks,” ETSI white paper, vol. 28, no. 2018, pp. 1–28,
2018.

[14] A. Ksentini and P. A. Frangoudis, “Toward slicing-enabled multi-access
edge computing in 5G,” IEEE Network, vol. 34, no. 2, pp. 99–105, Mar.
2020, publisher: IEEE.

[15] R. Khan, P. Kumar, D. N. K. Jayakody, and M. Liyanage, “A Survey on
Security and Privacy of 5G Technologies: Potential Solutions, Recent
Advancements, and Future Directions,” IEEE Communications Surveys
Tutorials, vol. 22, no. 1, pp. 196–248, 2020.

[16] T. He, E. N. Ciftcioglu, S. Wang, and K. S. Chan, “Location Privacy
in Mobile Edge Clouds: A Chaff-Based Approach,” IEEE Journal on
Selected Areas in Communications, vol. 35, no. 11, pp. 2625–2636, 2017,
publisher: IEEE.

236

Bibliography

[17] G. Sahu and S. S. Pawar, “Security Challenges in 5G Network,” in
Software Defined Networking for Ad Hoc Networks. Springer, 2022,
pp. 75–94.

[18] A. Clemm, L. Ciavaglia, L. Z. Granville, and J. Tantsura, “Intent-Based
Networking - Concepts and Definitions,” RFC Editor, Tech. Rep., Oct.
2022, issue: 9315 Num Pages: 23 Series: Request for Comments Pub-
lished: RFC 9315.

[19] “Autonomous Networks: Empowering Digital Transformation For
Smart Societies and Industries,” TM Forum, Tech. Rep., Oct. 2020.

[20] J. Niemoller, R. Szabo, A. Zahemszky, and D. Roeland, “Creating au-
tonomous networks with intent-based closed loops,” Ericsson review
(English edition), vol. 2022, no. 4, pp. 2–11, 2022.

[21] W. Zhang, D. Yang, and H. Wang, “Data-Driven Methods for Predic-
tive Maintenance of Industrial Equipment: A Survey,” IEEE Systems
Journal, vol. 13, no. 3, pp. 2213–2227, Sep. 2019, conference Name:
IEEE Systems Journal.

[22] C. Krupitzer, T. Wagenhals, M. Züfle, V. Lesch, D. Schäfer, A. Mozaf-
farin, J. Edinger, C. Becker, and S. Kounev, “A Survey on Predictive
Maintenance for Industry 4.0,” Feb. 2020, arXiv:2002.08224 [cs].

[23] M. Anisetti, C. A. Ardagna, and F. Berto, “An assurance process for
Big Data trustworthiness,” Future Generation Computer Systems, vol.
146, pp. 34–46, Sep. 2023.

[24] M. Anisetti, N. Bena, F. Berto, and G. Jeon, “A DevSecOps-based
Assurance Process for Big Data Analytics,” in 2022 IEEE International
Conference on Web Services (ICWS). Barcelona, Spain: IEEE, Jul.
2022, pp. 1–10.

[25] S. Kukliński and L. Tomaszewski, “Key Performance Indicators for 5G
network slicing,” in 2019 IEEE Conference on Network Softwarization
(NetSoft). IEEE, Jun. 2019, pp. 464–471.

[26] H. Yang, L. Lu, Y. Hu, R. Liu, K. Yao, X. Duan, and T. Sun, “A Techni-
cal Research towards 5G SLA: System Definition, Sense and Assurance

237

Bibliography

Solution,” in 2021 IEEE 21st International Conference on Commu-
nication Technology (ICCT). Tianjin, China: IEEE, Oct. 2021, pp.
462–471.

[27] M. Anisetti, F. Berto, and M. Banzi, “Orchestration of data-intensive
pipeline in 5G-enabled Edge Continuum,” in 2022 IEEE World
Congress on Services (SERVICES). Terassa, Spain: IEEE, Jul. 2022,
pp. 2–10, iSSN: 2642-939X.

[28] P. Ranaweera, A. Jurcut, and M. Liyanage, “MEC-enabled 5G Use
Cases: A Survey on Security Vulnerabilities and Countermeasures,”
ACM Comput. Surv., vol. 54, no. 9, pp. 186:1–186:37, Oct. 2021.

[29] Q.-V. Pham, F. Fang, V. N. Ha, M. J. Piran, M. Le, L. B. Le, W.-J.
Hwang, and Z. Ding, “A Survey of Multi-Access Edge Computing in
5G and Beyond: Fundamentals, Technology Integration, and State-of-
the-Art,” IEEE Access, vol. 8, pp. 116 974–117 017, 2020, conference
Name: IEEE Access.

[30] N. Hassan, K.-L. A. Yau, and C. Wu, “Edge Computing in 5G: A
Review,” IEEE Access, vol. 7, pp. 127 276–127 289, 2019, conference
Name: IEEE Access.

[31] D. Saxena, V. Raychoudhury, N. Suri, C. Becker, and J. Cao, “Named
Data Networking: A survey,” Computer Science Review, vol. 19, pp.
15–55, Feb. 2016.

[32] A. Afanasyev, J. Burke, T. Refaei, L. Wang, B. Zhang, and L. Zhang,
“A Brief Introduction to Named Data Networking,” in Proc. of MIL-
COM 2018 - 2018 IEEE Military Communications Conference (MIL-
COM). Los Angeles, CA: IEEE, Oct. 2018, pp. 1–6, event-place: Los
Angeles, CA.

[33] H. Khelifi, S. Luo, B. Nour, H. Moungla, Y. Faheem, R. Hussain,
and A. Ksentini, “Named Data Networking in Vehicular Ad Hoc Net-
works: State-of-the-Art and Challenges,” IEEE Commun. Surv. Tuto-
rials, vol. 22, no. 1, pp. 320–351, 2020.

[34] Z. Li, Y. Liu, Y. Chen, Y. Xu, and K. Liu, “Performance analysis

238

Bibliography

of a novel 5G architecture via Content-Centric Networking,” Physical
Communication, vol. 25, pp. 328–331, Dec. 2017.

[35] W. Shang, A. Bannis, T. Liang, Z. Wang, Y. Yu, A. Afanasyev,
J. Thompson, J. Burke, B. Zhang, and L. Zhang, “Named Data Net-
working of Things (Invited Paper),” in Proc. of 2016 IEEE First Inter-
national Conference on Internet-of-Things Design and Implementation
(IoTDI), Berlin, Germany, Apr. 2016, pp. 117–128, event-place: Berlin,
Germany.

[36] S. Lederer, C. Mueller, C. Timmerer, and H. Hellwagner, “Adaptive
multimedia streaming in information-centric networks,” IEEE Network,
vol. 28, no. 6, pp. 91–96, Nov. 2014.

[37] C. Tsilopoulos and G. Xylomenos, “Supporting diverse traffic types in
information centric networks,” in Proc. of ACM SIGCOMM workshop
on Information-centric networking, ser. ICN ’11. New York, NY, USA:
ACM, Aug. 2011, pp. 13–18, event-place: New York, NY, USA.

[38] A. Afanasyev, P. Mahadevan, I. Moiseenko, E. Uzun, and L. Zhang,
“Interest flooding attack and countermeasures in Named Data Net-
working,” in Proc. of 2013 IFIP Networking Conference, Brooklyn,
NY, USA, May 2013, pp. 1–9, event-place: Brooklyn, NY, USA.

[39] P. Gasti, G. Tsudik, E. Uzun, and L. Zhang, “DoS and DDoS in Named
Data Networking,” in Proc. of 22nd ICCCN, Nassau, Bahamas, Jul.
2013, pp. 1–7, event-place: Nassau, Bahamas.

[40] L. Yao, Y. Zeng, X. Wang, A. Chen, and G. Wu, “Detection and De-
fense of Cache Pollution Based on Popularity Prediction in Named Data
Networking,” IEEE Transactions on Dependable and Secure Comput-
ing, pp. 1–1, 2020.

[41] H. Salah, M. Alfatafta, S. SayedAhmed, and T. Strufe, “CoMon++:
Preventing Cache Pollution in NDN Efficiently and Effectively,” in 2017
IEEE 42nd Conference on Local Computer Networks (LCN). Singa-
pore: IEEE, Oct. 2017, pp. 43–51, place: Singapore.

[42] A. Karami and M. Guerrero-Zapata, “An ANFIS-based cache replace-

239

Bibliography

ment method for mitigating cache pollution attacks in Named Data
Networking,” Computer Networks, vol. 80, pp. 51–65, Apr. 2015.

[43] M. Conti, P. Gasti, and M. Teoli, “A lightweight mechanism for detec-
tion of cache pollution attacks in Named Data Networking,” Computer
Networks, vol. 57, no. 16, pp. 3178–3191, Nov. 2013.

[44] T. Nguyen, H. Mai, G. Doyen, R. Cogranne, W. Mallouli, E. M. d.
Oca, and O. Festor, “A Security Monitoring Plane for Named Data
Networking Deployment,” IEEE Communications Magazine, vol. 56,
no. 11, pp. 88–94, Nov. 2018.

[45] P. Tammana, R. Agarwal, and M. Lee, “Distributed Network Monitor-
ing and Debugging with SwitchPointer,” in 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18). Ren-
ton, WA: USENIX Association, Apr. 2018, pp. 453–456.

[46] P.-W. Tsai, C.-W. Tsai, C.-W. Hsu, and C.-S. Yang, “Network Mon-
itoring in Software-Defined Networking: A Review,” IEEE Systems
Journal, vol. 12, no. 4, pp. 3958–3969, Dec. 2018.

[47] T. Nguyen, X. Marchal, G. Doyen, T. Cholez, and R. Cogranne, “Con-
tent Poisoning in Named Data Networking: Comprehensive character-
ization of real deployment,” in 2017 IFIP/IEEE Symposium on Inte-
grated Network and Service Management (IM), Lisbon, Portugal, May
2017, pp. 72–80.

[48] S. Lee, K. Levanti, and H. S. Kim, “Network monitoring: Present and
future,” Computer Networks, vol. 65, pp. 84–98, Jun. 2014.

[49] “ISO 15408 CC – Common Criteria,” in Encyclopedia of Cryptography
and Security, H. C. A. van Tilborg and S. Jajodia, Eds. Boston, MA:
Springer US, 2011, pp. 648–648.

[50] M. Anisetti, C. A. Ardagna, E. Damiani, and F. Gaudenzi, “A Semi-
Automatic and Trustworthy Scheme for Continuous Cloud Service Cer-
tification,” IEEE Transactions on Services Computing, vol. 13, no. 1,
pp. 30–43, Jan. 2020, conference Name: IEEE Transactions on Services
Computing.

240

Bibliography

[51] M. Anisetti, C. Ardagna, E. Damiani, and G. Polegri, “Test-Based Se-
curity Certification of Composite Services,” ACM Trans. Web, vol. 13,
no. 1, pp. 3:1–3:43, Dec. 2018.

[52] P. Stephanow, G. Srivastava, and J. Schütte, “Test-based cloud service
certification of opportunistic providers,” in 2016 IEEE 9th International
Conference on Cloud Computing (CLOUD). San Francisco, CA, USA:
IEEE, 2016, pp. 843–848.

[53] M. Egea, K. Mahbub, G. Spanoudakis, and M. R. Vieira, “A Certifica-
tion Framework for Cloud Security Properties: The Monitoring Path,”
in Accountability and Security in the Cloud, M. Felici and C. Fernández-
Gago, Eds. Cham: Springer International Publishing, 2015, vol. 8937,
pp. 63–77.

[54] E. G. AbdAllah, H. S. Hassanein, and M. Zulkernine, “A Survey of
Security Attacks in Information-Centric Networking,” IEEE Commu-
nications Surveys & Tutorials, vol. 17, no. 3, pp. 1441–1454, 2015.

[55] M. Anisetti, C. A. Ardagna, F. Berto, and E. Damiani, “Security Certi-
fication Scheme for Content-centric Networks,” in 2021 IEEE Interna-
tional Conference on Services Computing (SCC). Chicago, IL, USA:
IEEE, Sep. 2021, pp. 203–212.

[56] G. D’Acquisto, J. Domingo-Ferrer, P. Kikiras, V. Torra, Y.-A. de Mon-
tjoye, and A. Bourka, “Privacy by design in big data: an overview of
privacy enhancing technologies in the era of big data analytics,” ENISA,
2015.

[57] W. L. Chang, “NIST Big Data Interoperability Framework: Volume 4,
Security and Privacy,” National Institute of Standards and Technology,
Tech. Rep., 2015.

[58] CSA, “Big Data Security and Privacy Handbook: 100 Best Practices in
Big Data Security and Privacy,” Cloud Security Alliance, Tech. Rep.,
Aug. 2016.

[59] D. S. Terzi, R. Terzi, and S. Sagiroglu, “A survey on security and
privacy issues in big data,” in 2015 10th International Conference for

241

Bibliography

Internet Technology and Secured Transactions (ICITST). IEEE, Dec.
2015, pp. 202–207.

[60] S. Yakoubov, V. Gadepally, N. Schear, E. Shen, and A. Yerukhimovich,
“A survey of cryptographic approaches to securing big-data analytics
in the cloud,” in Proc. of HPEC 2014, Waltham, MA, USA, Sep. 2014.

[61] X. Zhang, L. Qi, W. Dou, Q. He, C. Leckie, R. Kotagiri, and Z. Salcic,
“MRMondrian: Scalable Multidimensional Anonymisation for Big Data
Privacy Preservation,” IEEE Transactions on Big Data, vol. 8, no. 1,
pp. 125–139, Feb. 2022, publisher: IEEE.

[62] G. Manogaran, C. Thota, and M. V. Kumar, “MetaCloudDataStor-
age architecture for big data security in cloud computing,” Procedia
Computer Science, vol. 87, pp. 128–133, 2016, publisher: Elsevier.

[63] P. P. Sharma and C. P. Navdeti, “Securing big data hadoop: a review of
security issues, threats and solution,” Int. J. Comput. Sci. Inf. Technol,
vol. 5, no. 2, pp. 2126–2131, 2014.

[64] D. B. Rawat, R. Doku, and M. Garuba, “Cybersecurity in Big Data Era:
From Securing Big Data to Data-Driven Security,” IEEE Transactions
on Services Computing, vol. 14, no. 6, pp. 2055–2072, Nov. 2021.

[65] I. Hababeh, A. Gharaibeh, S. Nofal, and I. Khalil, “An Integrated
Methodology for Big Data Classification and Security for Improving
Cloud Systems Data Mobility,” IEEE Access, vol. 7, pp. 9153–9163,
2019, publisher: Institute of Electrical and Electronics Engineers Inc.

[66] C. A. Ardagna, R. Asal, E. Damiani, and Q. H. Vu, “From Security to
Assurance in the Cloud: A Survey,” ACM Computing Surveys, vol. 48,
no. 1, pp. 1–50, Sep. 2015.

[67] C. Liu, J. Chen, L. T. Yang, X. Zhang, C. Yang, R. Ranjan, and K. Rao,
“Authorized Public Auditing of Dynamic Big Data Storage on Cloud
with Efficient Verifiable Fine-Grained Updates,” IEEE Transactions on
Parallel and Distributed Systems, vol. 25, no. 9, pp. 2234–2244, Sep.
2014, publisher: IEEE.

[68] A. Kiesow, N. Zarvic, and O. Thomas, “Continuous Auditing in Big

242

Bibliography

Data Computing Environments: Towards an Integrated Audit Ap-
proach by Using CAATTs.” in GI-Jahrestagung, 2014, pp. 901–912.

[69] W. Li, Y. Yang, and D. Yuan, Reliability Assurance of Big Data in the
Cloud: Cost-Effective Replication-based Storage. Elsevier, Dec. 2015.

[70] J. Gao, C. Xie, and C. Tao, “Big data validation and quality assurance
- Issuses, challenges, and needs,” in 2016 IEEE Symposium on Service-
Oriented System Engineering (SOSE). Oxford, UK: IEEE, Mar. 2016,
pp. 433–441.

[71] M. Anisetti, C. A. Ardagna, C. Braghin, E. Damiani, A. Polimeno, and
A. Balestrucci, “Dynamic and Scalable Enforcement of Access Control
Policies for Big Data,” in The 13th International Conference on Man-
agement of Digital EcoSystems, vol. 8. ACM, Nov. 2021, pp. 71–78,
issue: 21.

[72] M. Prasinos, I. Basdekis, M. Anisetti, G. Spanoudakis, D. Koutsouris,
and E. Damiani, “A Modelling Framework for Evidence-Based Public
Health Policy Making,” IEEE Journal of Biomedical and Health Infor-
matics, vol. 26, no. 5, pp. 2388–2399, May 2022, publisher: Institute of
Electrical and Electronics Engineers Inc.

[73] Y. Demchenko, P. Grosso, C. De Laat, and P. Membrey, “Addressing
big data issues in scientific data infrastructure,” in Proc. of CTS 2013,
San Diego, CA, USA, May 2013.

[74] A. Jakóbik, “Big Data Security,” in Resource Management for Big Data
Platforms: Algorithms, Modelling, and High-Performance Computing
Techniques, F. Pop, J. Ko\lodziej, and B. Di Martino, Eds. Cham:
Springer International Publishing, 2016, pp. 241–261.

[75] “Cloud Controls Matrix (CCM) v3.0.1,” Cloud Security Alliance, Tech.
Rep., 2019, backup Publisher: Cloud Security Alliance.

[76] P. Stephanow and N. Fallenbeck, “Towards Continuous Certification of
Infrastructure-as-a-Service Using Low-Level Metrics,” in Proc. of IEEE
UIC-ATC-ScalCom, Beijing, China, Aug. 2015.

[77] L. Wang, J. P. Near, N. Somani, P. Gao, A. Low, D. Dao, and D. Song,

243

Bibliography

“Data Capsule: A New Paradigm for Automatic Compliance with Data
Privacy Regulations,” in Heterogeneous Data Management, Polystores,
and Analytics for Healthcare. Springer, Cham, 2019, vol. 11721 LNCS,
pp. 3–23.

[78] M. Anisetti, C. A. Ardagna, E. Damiani, and F. Saonara, “A Test-based
Security Certification Scheme for Web Services,” ACM Transactions on
the Web (TWEB), vol. 7, no. 2, pp. 1–41, May 2013.

[79] C. A. Ardagna, V. Bellandi, M. Bezzi, P. Ceravolo, E. Damiani, and
C. Hebert, “Model-Based Big Data Analytics-as-a-Service: Take Big
Data to the Next Level,” IEEE Transactions on Services Computing,
vol. 14, no. 2, pp. 516–529, Mar. 2021.

[80] G. Spanoudakis, P. Katrakazas, D. Koutsouris, D. Kikidis, A. Bibas,
and N. H. Pontopidan, “Public Health Policy for Management of Hear-
ing Impairments Based on Big Data Analytics: EVOTION at Gene-
sis,” in 2017 IEEE 17th International Conference on Bioinformatics
and Bioengineering (BIBE), vol. 2018-January. IEEE, Oct. 2017, pp.
525–530.

[81] M. Anisetti, C. A. Ardagna, E. Damiani, and F. Gaudenzi, “A Security
Benchmark for OpenStack,” in 2017 IEEE 10th International Confer-
ence on Cloud Computing (CLOUD), vol. 2017-June. IEEE, Jun. 2017,
pp. 294–301.

[82] B. A. Bouna, C. Clifton, and Q. Malluhi, “Efficient sanitization of un-
safe data correlations,” in EDBT/ICDT 2015 Joint Conference, Brus-
sels, Belgium, Mar. 2015.

[83] C. Carrión, “Kubernetes Scheduling: Taxonomy, Ongoing Issues and
Challenges,” ACM Comput. Surv., vol. 55, no. 7, pp. 138:1–138:37,
Dec. 2022.

[84] Z. Rejiba and J. Chamanara, “Custom Scheduling in Kubernetes: A
Survey on Common Problems and Solution Approaches,” ACM Com-
put. Surv., vol. 55, no. 7, pp. 151:1–151:37, Dec. 2022.

[85] C. A. Ardagna, R. Asal, E. Damiani, N. E. Ioini, M. Elahi, and
C. Pahl, “From Trustworthy Data to Trustworthy IoT: A Data Collec-

244

Bibliography

tion Methodology Based on Blockchain,” ACM Transactions on Cyber-
Physical Systems, vol. 5, no. 1, pp. 1–26, Dec. 2021.

[86] C. A. Ardagna, R. Asal, E. Damiani, N. El Ioini, and C. Pahl, “Trust-
worthy IoT: An evidence collection approach based on smart contracts,”
in 2019 IEEE International Conference on Services Computing (SCC).
IEEE, 2019, pp. 46–50.

[87] “IEEE Standard for Adoption of OpenFog Reference Architecture for
Fog Computing,” IEEE Std 1934-2018, pp. 1–176, 2018.

[88] M. Anisetti, C. A. Ardagna, N. Bena, and R. Bondaruc, “Towards
an Assurance Framework for Edge and IoT Systems,” in 2021 IEEE
International Conference on Edge Computing (EDGE), Guangzhou,
China, 2021, pp. 41–43.

[89] W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed, “Edge
computing: A survey,” Future Generation Computer Systems, vol. 97,
pp. 219–235, Aug. 2019.

[90] C. Shu, Z. Zhao, Y. Han, G. Min, and H. Duan, “Multi-User Offloading
for Edge Computing Networks: A Dependency-Aware and Latency-
Optimal Approach,” IEEE Internet of Things Journal, vol. 7, no. 3,
pp. 1678–1689, Mar. 2020.

[91] M. Anisetti, C. A. Ardagna, N. Bena, and E. Damiani, “An Assurance
Framework and Process for Hybrid Systems,” in Communications in
Computer and Information Science, vol. 1484 CCIS, 2021, pp. 79–101.

[92] N. Rieke, J. Hancox, W. Li, F. M. ı, H. R. Roth, S. Albarqouni,
S. Bakas, M. N. Galtier, B. A. Landman, K. Maier-Hein, S. Ourselin,
M. Sheller, R. M. Summers, A. Trask, D. Xu, M. Baust, and M. J.
Cardoso, “The future of digital health with federated learning,” npj
Digital Medicine, vol. 3, no. 1, pp. 1–7, Sep. 2020, publisher: Nature
Publishing Group.

[93] L. Bittencourt, R. Immich, R. Sakellariou, N. Fonseca, E. Madeira,
M. Curado, L. Villas, L. DaSilva, C. Lee, and O. Rana, “The Inter-
net of Things, Fog and Cloud continuum: Integration and challenges,”
Internet of Things, vol. 3-4, pp. 134–155, Oct. 2018.

245

Bibliography

[94] N. Akhtar, A. Raza, V. Ishakian, and I. Matta, “COSE: Configuring
Serverless Functions using Statistical Learning,” in IEEE INFOCOM
2020 - IEEE Conference on Computer Communications, Jul. 2020, pp.
129–138.

[95] S. Nastic, T. Rausch, O. Scekic, S. Dustdar, M. Gusev, B. Koteska,
M. Kostoska, B. Jakimovski, S. Ristov, and R. Prodan, “A Serverless
Real-Time Data Analytics Platform for Edge Computing,” IEEE In-
ternet Computing, vol. 21, no. 4, pp. 64–71, 2017.

[96] A. Das, A. Leaf, C. A. Varela, and S. Patterson, “Skedulix: Hybrid
Cloud Scheduling for Cost-Efficient Execution of Serverless Applica-
tions,” in 2020 IEEE 13th International Conference on Cloud Comput-
ing (CLOUD), Oct. 2020, pp. 609–618.

[97] S. Nastic, P. Raith, A. Furutanpey, T. Pusztai, and S. Dustdar, “A
Serverless Computing Fabric for Edge & Cloud,” in 2022 IEEE 4th
International Conference on Cognitive Machine Intelligence (CogMI),
2022, pp. 1–12.

[98] J. G. Quenum and J. Josua, “Multi-Cloud Serverless Function Compo-
sition,” in Proceedings of the 14th IEEE/ACM International Conference
on Utility and Cloud Computing, ser. UCC ’21. New York, NY, USA:
Association for Computing Machinery, 2021, pp. 1–10, event-place: Le-
icester, United Kingdom.

[99] M. Anisetti, C. A. Ardagna, and N. Bena, “Multi-Dimensional Certifi-
cation of Modern Distributed Systems,” IEEE Transactions on Services
Computing, pp. 1–14, 2022.

[100] “GS MEC 003 - V3.1.1 - Multi-access Edge Computing (MEC); Frame-
work and Reference Architecture,” vol. 1, 2022.

[101] F. Giannone, P. A. Frangoudis, A. Ksentini, and L. Valcarenghi, “Or-
chestrating heterogeneous MEC-based applications for connected vehi-
cles,” Computer Networks, vol. 180, p. 107402, Oct. 2020, publisher:
Elsevier.

[102] K. Liolis, J. Cahill, E. Higgins, M. Corici, E. Troudt, and P. Sutton,
“Over-the-air demonstration of satellite integration with 5G core net-

246

Bibliography

work and multi-access edge computing use case,” in IEEE 5G World
Forum, 5GWF 2019 - Conference Proceedings, Sep. 2019, pp. 1–5.

[103] M. Anisetti, C. A. Ardagna, and E. Damiani, “Security Certification
of Composite Services: A Test-Based Approach,” in Proc. of the 20th
IEEE International Conference on Web Services (ICWS 2013), San
Francisco, CA, USA, Jul. 2013, pp. 475–482.

[104] M. Anisetti, C. A. Ardagna, E. Damiani, F. Gaudenzi, and G. Jeon,
“Cost-effective deployment of certified cloud composite services,” Jour-
nal of Parallel and Distributed Computing, vol. 135, pp. 203–218, 2020.

[105] M. M. Rathore, A. Paul, A. Ahmad, M. Anisetti, and G. Jeon,
“Hadoop-Based Intelligent Care System (HICS): Analytical Approach
for Big Data in IoT,” ACM Trans. Internet Technol., vol. 18, no. 1, Nov.
2017, place: New York, NY, USA Publisher: Association for Comput-
ing Machinery.

[106] V. Grimblatt, G. Ferre, F. Rivet, C. Jego, and N. Vergara, “Precision
agriculture for small to medium size farmers – an IoT approach,” in
Proc. of 2019 IEEE ISCAS. IEEE, May 2019, place: Sapporo, Japan.

[107] J. Gai, L. Tang, and B. L. Steward, “Automated crop plant detection
based on the fusion of color and depth images for robotic weed control,”
Journal of Field Robotics, vol. 37, no. 1, pp. 35–52, 2020.

[108] M. Friedli, N. Kirchgessner, C. Grieder, F. Liebisch, M. Mannale, and
A. Walter, “Terrestrial 3D laser scanning to track the increase in canopy
height of both monocot and dicot crop species under field conditions,”
Plant Methods, vol. 12, no. 1, p. 9, Jan. 2016.

[109] Y. Hu, L. Wang, L. Xiang, Q. Wu, and H. Jiang, “Automatic non-
destructive growth measurement of leafy vegetables based on Kinect,”
Sensors (Basel), vol. 18, no. 3, Mar. 2018.

[110] F. Golbach, G. Kootstra, S. Damjanovic, G. Otten, and R. van de
Zedde, “Validation of plant part measurements using a 3D reconstruc-
tion method suitable for high-throughput seedling phenotyping,” Ma-
chine Vision and Applications, vol. 27, no. 5, pp. 663–680, Jul. 2016.

247

Bibliography

[111] J. C. Rose, S. Paulus, and H. Kuhlmann, “Accuracy analysis of a multi-
view stereo approach for phenotyping of tomato plants at the organ
level,” Sensors (Basel), vol. 15, no. 5, pp. 9651–9665, Apr. 2015, pub-
lisher: MDPI AG.

[112] J. L. Araus and J. E. Cairns, “Field high-throughput phenotyping: the
new crop breeding frontier,” Trends Plant Sci., vol. 19, no. 1, pp. 52–61,
Jan. 2014, publisher: Elsevier BV.

[113] A. Hartmann, T. Czauderna, R. Hoffmann, N. Stein, and F. Schreiber,
“HTPheno: an image analysis pipeline for high-throughput plant phe-
notyping,” BMC Bioinformatics, vol. 12, no. 1, p. 148, May 2011, pub-
lisher: Springer Science and Business Media LLC.

[114] A.-K. Mahlein, “Plant disease detection by imaging sensors - parallels
and specific demands for precision agriculture and plant phenotyping,”
Plant Dis., vol. 100, no. 2, pp. 241–251, Feb. 2016, publisher: Scientific
Societies.

[115] R. Benadjila, L. Khati, and D. Vergnaud, “Secure storage–Confidential-
ity and authentication,” Computer Science Review, vol. 44, p. 100465,
May 2022.

[116] S. More and S. Chaudhari, “Third Party Public Auditing Scheme for
Cloud Storage,” Procedia Computer Science, vol. 79, pp. 69–76, Jan.
2016.

[117] R. A. Nafea and M. A. Almaiah, “Cyber Security Threats in Cloud:
Literature Review,” in 2021 International Conference on Information
Technology (ICIT). IEEE, Jul. 2021, pp. 779–786.

[118] F. M. Awaysheh, M. N. Aladwan, M. Alazab, S. Alawadi, J. C. Ca-
baleiro, and T. F. Pena, “Security by Design for Big Data Frameworks
Over Cloud Computing,” IEEE Transactions on Engineering Manage-
ment, vol. 69, no. 6, pp. 3676–3693, Dec. 2022, publisher: Institute of
Electrical and Electronics Engineers Inc.

[119] D. Balouek-Thomert, E. G. Renart, A. R. Zamani, A. Simonet, and
M. Parashar, “Towards a computing continuum: Enabling edge-to-
cloud integration for data-driven workflows,” The International Jour-

248

Bibliography

nal of High Performance Computing Applications, vol. 33, no. 6, pp.
1159–1174, 2019, _eprint: https://doi.org/10.1177/1094342019877383.

[120] Y. Zhao, W. Wang, Y. Li, C. Colman Meixner, M. Tornatore, and
J. Zhang, “Edge Computing and Networking: A Survey on Infrastruc-
tures and Applications,” IEEE Access, vol. 7, pp. 101 213–101 230, 2019,
conference Name: IEEE Access.

[121] A. Orive, A. Agirre, H.-L. Truong, I. Sarachaga, and M. Marcos, “Qual-
ity of Service Aware Orchestration for Cloud–Edge Continuum Appli-
cations,” Sensors, vol. 22, no. 5, p. 1755, Feb. 2022, publisher: MDPI.

[122] K. Fu, W. Zhang, Q. Chen, D. Zeng, and M. Guo, “Adaptive Resource
Efficient Microservice Deployment in Cloud-Edge Continuum,” IEEE
Transactions on Parallel and Distributed Systems, vol. 33, no. 8, pp.
1825–1840, Aug. 2022, publisher: IEEE.

[123] A. Ullah, H. Dagdeviren, R. C. Ariyattu, J. DesLauriers, T. Kiss, and
J. Bowden, “MiCADO-Edge: Towards an Application-level Orchestra-
tor for the Cloud-to-Edge Computing Continuum,” Journal of Grid
Computing, vol. 19, no. 4, p. 47, Dec. 2021, publisher: Springer.

[124] L. Baresi, D. F. Mendonça, M. Garriga, S. Guinea, and G. Quattroc-
chi, “A Unified Model for the Mobile-Edge-Cloud Continuum,” ACM
Transactions on Internet Technology (TOIT), vol. 19, no. 2, pp. 1–21,
May 2019, publisher: ACM New York, NY, USA.

[125] P. Trakadas, N. Nomikos, E. T. Michailidis, T. Zahariadis, F. M. Facca,
D. Breitgand, S. Rizou, X. Masip, and P. Gkonis, “Hybrid Clouds for
Data-Intensive, 5G-Enabled IoT Applications: An Overview, Key Is-
sues and Relevant Architecture,” Sensors, vol. 19, no. 16, p. 3591, Aug.
2019, publisher: MDPI.

[126] F. Spinelli and V. Mancuso, “Toward Enabled Industrial Verticals in
5G: A Survey on MEC-Based Approaches to Provisioning and Flex-
ibility,” IEEE Communications Surveys Tutorials, vol. 23, no. 1, pp.
596–630, 2021.

[127] A. Ndikumana, N. H. Tran, T. M. Ho, Z. Han, W. Saad, D. Niyato,
and C. S. Hong, “Joint Communication, Computation, Caching, and

249

Bibliography

Control in Big Data Multi-Access Edge Computing,” IEEE Transac-
tions on Mobile Computing, vol. 19, no. 6, pp. 1359–1374, Jun. 2020,
publisher: IEEE.

[128] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
“On Multi-Access Edge Computing: A Survey of the Emerging 5G Net-
work Edge Cloud Architecture and Orchestration,” IEEE Communica-
tions Surveys Tutorials, vol. 19, no. 3, pp. 1657–1681, 2017, publisher:
IEEE.

[129] P. Wang, J. Zhang, X. Zhang, Z. Yan, B. G. Evans, and W. Wang,
“Convergence of Satellite and Terrestrial Networks: A Comprehensive
Survey,” IEEE Access, vol. 8, pp. 5550–5588, 2020, conference Name:
IEEE Access.

[130] R. Xie, Q. Tang, Q. Wang, X. Liu, F. R. Yu, and T. Huang, “Satellite-
Terrestrial Integrated Edge Computing Networks: Architecture, Chal-
lenges, and Open Issues,” IEEE Network, vol. 34, no. 3, pp. 224–231,
May 2020, conference Name: IEEE Network.

[131] S. Hamdan, M. Ayyash, and S. Almajali, “Edge-Computing Architec-
tures for Internet of Things Applications: A Survey,” Sensors, vol. 20,
no. 22, p. 6441, Jan. 2020, number: 22 Publisher: Multidisciplinary
Digital Publishing Institute.

[132] W. Rafique, L. Qi, I. Yaqoob, M. Imran, R. U. Rasool, and W. Dou,
“Complementing IoT Services Through Software Defined Networking
and Edge Computing: A Comprehensive Survey,” IEEE Communica-
tions Surveys & Tutorials, vol. 22, no. 3, pp. 1761–1804, 2020, confer-
ence Name: IEEE Communications Surveys & Tutorials.

[133] F. Rinaldi, H.-L. Maattanen, J. Torsner, S. Pizzi, S. Andreev, A. Iera,
Y. Koucheryavy, and G. Araniti, “Non-Terrestrial Networks in 5G &
Beyond: A Survey,” IEEE Access, vol. 8, pp. 165 178–165 200, 2020,
conference Name: IEEE Access.

[134] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, “A
Survey on Mobile Edge Networks: Convergence of Computing, Caching
and Communications,” IEEE Access, vol. 5, pp. 6757–6779, 2017, con-
ference Name: IEEE Access.

250

Bibliography

[135] B. Zolfaghari, G. Srivastava, S. Roy, H. R. Nemati, F. Afghah,
T. Koshiba, A. Razi, K. Bibak, P. Mitra, and B. K. Rai, “Content
Delivery Networks: State of the Art, Trends, and Future Roadmap,”
ACM Comput. Surv., vol. 53, no. 2, pp. 34:1–34:34, Apr. 2020.

[136] C. A. Ardagna, R. Asal, E. Damiani, T. Dimitrakos, N. El Ioini, and
C. Pahl, “Certification-Based Cloud Adaptation,” IEEE TSC, pp. 1–1,
2018.

[137] X.-H. Wu, J.-P. Li, and W. Yao, “A network security evaluation model
based on common criteria,” in Proc. of IEEE ICACIA. IEEE, 2008,
pp. 416–420.

[138] G. Bossert and F. Guihery, “Security evaluation of communication pro-
tocols in common criteria,” in Proc. of IEEE ICC, 2012.

[139] H. L. Mai, T. Nguyen, G. Doyen, R. Cogranne, W. Mallouli, E. M.
de Oca, and O. Festor, “Towards a security monitoring plane for named
data networking and its application against content poisoning attack,”
in NOMS 2018 - 2018 IEEE/IFIP Network Operations and Manage-
ment Symposium, Taipei, Taiwan, Apr. 2018, pp. 1–9.

[140] N. L. M. van Adrichem and F. A. Kuipers, “NDNFlow: Software-
defined Named Data Networking,” in Proc. of the 1st IEEE NetSoft,
Apr. 2015, pp. 1–5.

[141] Y. Zhou, J. Bi, T. Yang, K. Gao, J. Cao, D. Zhang, Y. Wang, and
C. Zhang, “HyperSight: Towards Scalable, High-Coverage, and Dy-
namic Network Monitoring Queries,” IEEE Journal on Selected Areas
in Communications, vol. 38, no. 6, pp. 1147–1160, Jun. 2020.

[142] A. Bialas, M. Michalak, and B. Flisiuk, “Anomaly Detection in Net-
work Traffic Security Assurance,” in Proc. of DepCoS-RELCOMEX,
ser. Advances in Intelligent Systems and Computing, W. Zamojski,
J. Mazurkiewicz, J. Sugier, T. Walkowiak, and J. Kacprzyk, Eds.
Cham: Springer International Publishing, 2020, pp. 46–56, event-place:
Cham.

[143] K. Löfgren and C. W. R. Webster, “The value of Big Data in govern-

251

Bibliography

ment: The case of ‘smart cities’,” Big Data & Society, vol. 7, no. 1, p.
205395172091277, Jan. 2020, publisher: SAGE Publications Ltd.

[144] F. Berto, C. Ardagna, M. Torrente, D. Manenti, E. Ferrari, A. Calcante,
R. Oberti, C. Fra’, and L. Ciani, “A 5G-IoT enabled Big Data infras-
tructure for data-driven agronomy,” in 2022 IEEE Globecom Workshops
(GC Wkshps). Rio de Janeiro, Brazil: IEEE, Dec. 2022, pp. 588–594.

[145] S. A. Lokhande, “Effective use of Big Data in Precision Agriculture,”
in Proc. of 2021 IEEE ESCI, Mar. 2021, pp. 312–316.

[146] C. Mi, X. Peng, L. Peng, C. Zhao, and X. Deng, “Research on Crop
Disaster Stress Risk Mapping System Based on Agriculture Big Data,”
in Proc. of 2021 ICEITSA, Dec. 2021, pp. 525–530.

[147] J. C. S. D. Anjos, K. J. Matteussi, P. R. R. D. Souza, G. J. A. Grabher,
G. A. Borges, J. L. V. Barbosa, G. V. Gonzalez, V. R. Q. Leithardt, and
C. F. R. Geyer, “Data Processing Model to Perform Big Data Analytics
in Hybrid Infrastructures,” IEEE Access, vol. 8, pp. 170 281–170 294,
2020, publisher: Institute of Electrical and Electronics Engineers Inc.

[148] M. Anisetti, C. A. Ardagna, E. Damiani, and P. G. Panero, “A Method-
ology for Non-Functional Property Evaluation of Machine Learning
Models,” in Proceedings of the 12th International Conference on Man-
agement of Digital EcoSystems, ser. MEDES ’20. New York, NY, USA:
Association for Computing Machinery, 2020, pp. 38–45.

[149] C. Tankard, “Big data security,” Network Security, vol. 2012, no. 7, pp.
5–8, Jul. 2012.

[150] G. D. Samaraweera and J. M. Chang, “Security and Privacy Implica-
tions on Database Systems in Big Data Era: A Survey,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 33, no. 1, pp. 239–258,
Jan. 2021, publisher: IEEE Computer Society.

[151] D. Yadav, D. H. Maheshwari, and D. U. Chandra, “Big Data Hadoop:
Security and Privacy,” SSRN Journal, 2019.

[152] M. Khan and M. D. Ansari, “Security and privacy issue of big data over

252

Bibliography

the cloud computing: A comprehensive analysis,” International Journal
of Recent Technology and Engineering, vol. 7, no. 6, pp. 413–417, 2019.

[153] E. Bertino and E. Ferrari, “Big Data Security and Privacy,” in A Com-
prehensive Guide Through the Italian Database Research Over the Last
25 Years. Springer, 2018.

[154] L. Zhou, A. Fu, S. Yu, M. Su, and B. Kuang, “Data integrity verification
of the outsourced big data in the cloud environment: A survey,” Journal
of Network and Computer Applications, vol. 122, pp. 1–15, Nov. 2018.

[155] J. Koo, G. Kang, and Y.-G. Kim, “Security and Privacy in Big Data
Life Cycle: A Survey and Open Challenges,” Sustainability, vol. 12,
no. 24, p. 10571, Dec. 2020.

[156] K. S, Y. S, and R. V. P, “An evaluation on big data generalization us-
ing k-Anonymity algorithm on cloud,” in 2015 IEEE 9th International
Conference on Intelligent Systems and Control (ISCO). IEEE, Jan.
2015, pp. 1–5.

[157] S.-B. Jang, “A study of performance enhancement in big data
anonymization,” in 2017 4th International Conference on Computer Ap-
plications and Information Processing Technology (CAIPT), vol. 2018-
January. IEEE, Aug. 2017, pp. 1–4.

[158] H. Kupwade Patil and R. Seshadri, “Big Data Security and Privacy
Issues in Healthcare,” in Proc. of IEEE Big Data 2014, Anchorage,
AK, USA, Jun. 2014.

[159] A. Mehmood, I. Natgunanathan, Y. Xiang, G. Hua, and S. Guo, “Pro-
tection of Big Data Privacy,” IEEE Access, vol. 4, pp. 1821–1834, 2016.

[160] M. Elsayed and M. Zulkernine, “Towards Security Monitoring for Cloud
Analytic Applications,” in 2018 IEEE 4th International Conference on
Big Data Security on Cloud (BigDataSecurity), IEEE International
Conference on High Performance and Smart Computing, (HPSC) and
IEEE International Conference on Intelligent Data and Security (IDS).
IEEE, May 2018, pp. 69–78.

[161] M. Sameen and S. O. Hwang, “TIMPANY - deTectIon of Model Poison-

253

Bibliography

ing Attacks usiNg accuracY,” IEEE Access, vol. 9, pp. 139 415–139 425,
2021, publisher: Institute of Electrical and Electronics Engineers Inc.

[162] G. Ra, D. Kim, D. Seo, and I. Lee, “A Federated Framework for Fine-
Grained Cloud Access Control for Intelligent Big Data Analytic by Ser-
vice Providers,” IEEE Access, vol. 9, pp. 47 084–47 095, 2021, publisher:
Institute of Electrical and Electronics Engineers Inc.

[163] P. Zhang, X. Zhou, W. Li, and J. Gao, “A Survey on Quality Assurance
Techniques for Big Data Applications,” in 2017 IEEE Third Interna-
tional Conference on Big Data Computing Service and Applications
(BigDataService). IEEE, Apr. 2017, pp. 313–319.

[164] D. Lee, “Big Data Quality Assurance Through Data Traceability: A
Case Study of the National Standard Reference Data Program of Ko-
rea,” IEEE Access, vol. 7, pp. 36 294–36 299, 2019.

[165] V. Casola, A. D. Benedictis, S. D. Martino, N. Mazzocca, and L. L. L.
Starace, “Security-Aware Deployment Optimization of Cloud–Edge
Systems in Industrial IoT,” IEEE Internet of Things Journal, vol. 8,
no. 16, pp. 12 724–12 733, Aug. 2021.

[166] A. Brogi and S. Forti, “QoS-Aware Deployment of IoT Applications
Through the Fog,” IEEE Internet of Things Journal, vol. 4, no. 5, pp.
1185–1192, Oct. 2017.

[167] K. Jedlička and K. Charvát, “Visualisation of Big Data in Agriculture
and Rural Development,” in Proc. of 2018 IST-Africa, May 2018, pp.
Page 1 of 8–Page 8 of 8.

[168] J.-c. Zhao and J.-x. Guo, “Big data analysis technology application
in agricultural intelligence decision system,” in Proc. of 2018 IEEE
ICCCBDA, Apr. 2018, pp. 209–212.

[169] M. N. Islam Sarker, M. Wu, B. Chanthamith, S. Yusufzada, D. Li, and
J. Zhang, “Big Data Driven Smart Agriculture: Pathway for Sustain-
able Development,” in Proc. of 2019 IEEE ICAIBD, May 2019, pp.
60–65.

[170] B. Gokaraju, S. Samiappan, and Y. S. Kale, “Big Data Fusion Chal-

254

Bibliography

lenge: Unmanned Aerial System Based Precision Agriculture,” in Proc.
of 2021 IEEE ICETCI, Aug. 2021, pp. 77–81.

[171] M. Dholu and K. Ghodinde, “Internet of Things (IoT) for Precision
Agriculture Application,” in Proc. of 2018 IEEE ICOEI, May 2018,
pp. 339–342.

[172] D. K. Singh and R. Sobti, “Role of Internet of Things and Machine
Learning in Precision Agriculture: A Short Review,” in Proc. of 2021
IEEE ISPCC. Solan, India: IEEE, Oct. 2021, pp. 750–754.

[173] L. G. Rios and J. A. I. Diguez, “Big Data Infrastructure for analyzing
data generated by Wireless Sensor Networks,” in Proc. of 2014 IEEE
BigData, Jun. 2014, pp. 816–823.

[174] Y. Demchenko, F. Turkmen, C. de Laat, C. Blanchet, and C. Loomis,
“Cloud based big data infrastructure: Architectural components and
automated provisioning,” in Proc. of 2016 IEEE HPCS, Jul. 2016, pp.
628–636.

[175] C. A. Ardagna, E. Damiani, and F. Berto, “Script Language Secu-
rity,” in Encyclopedia of Cryptography, Security and Privacy, S. Jajo-
dia, P. Samarati, and M. Yung, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, Sep. 2023, pp. 1–3.

[176] M. Anisetti, F. Berto, and R. Bondaruc, “QoS-aware Deployment of
Service Compositions in 5G-empowered Edge-Cloud Continuum,” in
2023 IEEE International Conference on Cloud Computing (CLOUD).
IEEE, 2023, pp. 471–478.

[177] F. Berto, L. Calderoni, M. Conti, and E. Losiouk, “Spatial bloom filter
in named data networking: a memory efficient solution,” in Proceedings
of the 35th Annual ACM Symposium on Applied Computing. Brno
Czech Republic: ACM, Mar. 2020, pp. 274–277.

255

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Contribution
	Organisation

	Reference architecture
	Modern Edge-Cloud Infrastructures
	The role of containerization and virtualisation
	The importance of Deployment
	Gaps and challenges

	Infrastructure assurance
	Our Assurance Approach at a Glance
	Infrastructure Modelling
	Service Interfaces and Functionalities
	Components
	Configurations, states and endpoints

	Assurance Methodology
	Metrics
	Contracts

	Assurance Process

	Telco Edge Networks
	Edge Computing
	5G architecture
	Mobile Edge in 5G
	Security and Privacy in 5G
	O-RAN Alliance

	5G Network Simulator
	Aether
	NFV orchestrator and MEC applications

	Automation in networks: Intent Based Networking and services
	Satellite networks
	IoT networks

	Assurance of Telco Edge Networks
	Research objective
	Motivating Scenario: 5G enabled edge computing
	Actors
	5G core network services

	5G Functionalities
	5G Properties
	Assurance in satellite and IoT networks

	Assurance for CDN networks
	Information Centric Networks
	NDN-based CDN
	Assurance Methodology and System Model
	Abstract Certification Model
	Metrics
	Rules
	Contract
	Certificate
	Non-Functional Properties

	Certification Services
	Measurement Collection Service
	Contract Verification Service

	Centralized Certification Process
	Network Model
	Certification Process

	Decentralized Certification Process
	Network Model
	Certification Process

	Discussion
	Network Adaptation
	Secure Service Deployment
	Attack Detection

	Assurance in Big Data Analysis Platforms
	Assurance Process and Architecture
	Assurance Process
	Assurance Architecture

	Modelling Big Data Analytics Pipeline
	Processing Pipeline
	Big Data ecosystem
	Building a Big Data Analytics Pipeline

	Reference Scenario
	Assurance Evaluation Methodology for Big Data Analytics Pipeline
	Template annotation
	Instance annotation
	Assurance evaluation

	Discussion

	Assurance Aware Deployment infrastructures
	Continuous Non-Functional Property assurance in deployment infrastructure
	Extending deployment infrastructures

	Introduction
	Reference Scenario
	Requirements

	Building Blocks
	Data-intensive Pipeline

	Orchestration Builder
	QoS on Continuum Edge

	Walkthrough Example
	5G Orchestration Deployment

	Discussion

	Assurance Aware Deployment in E2C Continuum
	Scenario, Requirements and Architecture
	Edge-continuum deployment Requirements
	Deployment Architecture
	Cloud
	Telco-Edge
	On-premises

	Methodology
	Annotated Service Composition Template
	Annotated Continuum Facilities Graph
	Deployment matching
	Deployment Recipes

	Experimental scenario: MIND Foods HUB
	Background and motivation
	System service components
	System implementation
	Data lake services
	Sensor platforms
	Data flow
	Data pipeline

	Discussion

	Experimental results
	5G Simulator setup
	5gcnl-oran experiments
	5gcnl-osm-20 experiments

	Assurance in 5G networks
	Network connection availability
	Network latency performance
	Network management automation
	Storage confidentiality
	Experimental evaluation

	Assurance and Certification for CDN networks
	Certification Contracts
	Contract Verification Process Performance
	Network Usage

	Assurance in Big Data Analysis Platforms
	Experimental setup
	Assurance Evaluation Walkthrough
	Performance Evaluation

	Assurance Aware Deployment in E2C Continuum
	Experimental setup
	Performance evaluation

	MIND foods Hub Big Data Engine
	Image thumbnail generation
	Query history of measurements
	File retrieval
	ICON data ingestion
	Rover data ingestion

	Future work
	Related work
	Telco Edge Networks
	Assurance for CDN networks
	Assurance in Big Data Analysis Platforms
	Assurance Aware Deployment in E2C Continuum
	Experimental scenario: MIND Foods HUB

	Conclusions
	Publications
	Acronyms
	Bibliography

